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Abstract

Adaptive learning models are used to predict behavior in repeated choice tasks. Predictions can be based on previous payoffs or

previous choices of the player. The current paper proposes a new method for evaluating the degree of reliance on past choices, called

equal payoff series extraction (EPSE). Under this method a simulated player has the same exact choices as the player but receives equal

constant payoffs from all of the alternatives. Success in predicting the next choice ahead for this simulated player therefore relies strictly

on mimicry of previous choices of the actual player. This allows determining the marginal fit of predictions that are not based on the

actual task payoffs. To evaluate the reliance on past choices under different models, an experiment was conducted in which 48

participants completed a three-alternative choice task in four task conditions. Two different learning rules were evaluated: an interference

rule and a decay rule. The results showed that while the predictions of the decay rule relied more on past choices, only the reliance on past

payoffs was associated with improved parameter generality. Moreover, we show that the Equal Payoff Series can be used as a criterion

for optimizing parameters resulting in better parameter generalizability.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of the current paper is to present a method for
evaluating adaptive learning models and for optimizing
model parameters. Adaptive learning models are used to
predict behavior in repeated individual and multi-
player games. In these tasks, the player chooses repeatedly
from multiple alternatives and receives immediate
feedback after each choice without prior information
concerning the alternatives’ payoff distribution. Recently,
there has been a movement towards modeling adaptive
learning behavior at the level of the individual decision
maker (Busemeyer & Stout, 2002; Busemeyer & Wang,
2000; Erev & Barron, 2005; Haruvy & Erev, 2002; Ho,
Wang, & Camerer, in press; Stahl, 1996; Wallsten, Pleskac,
& Lejuez, 2005; Wilcox, 2006; Yechiam & Busemeyer,
e front matter r 2006 Elsevier Inc. All rights reserved.
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2005). This approach grew out of the realization that
individuals are sufficiently different that pooling them
together implies a grave misspecification (Estes, 1956;
Haruvy & Erev, 2002; Siegler, 1987). Evaluation is usually
based on the accuracy of ‘next choice ahead’ predictions
given the previous outcomes of the player. Yet these
predictions can be based on two independent factors:
responses based on the previous payoffs and responses that
are independent of previous payoffs and rely only on the
choice history of the player. The current method evaluates
the impact of the relative influence of these two factors.
Some degree of reliance on previous choices (made by

the player) appears in most adaptive learning models (see
Erev & Haruvy, 2005), and is due to the fact that in most
models (a) the (modeled) attractiveness of an alternative
can be improved by the selection of the alternative and
(b) the past selection of an alternative is associated with
the past attractiveness of the alternative. In this way, the
reliance on previous choices adds additional strength to
the model because past choices act as ‘‘crutches’’ that guide
the model towards correct future choices.

www.elsevier.com/locate/jmp
dx.doi.org/10.1016/j.jmp.2006.11.002
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Assessing the degree of reliance on previous choices is
particularly important for applications of learning models
to the study of cognitive processes (see e.g., Busemeyer &
Stout, 2002; Cohen & Ranganath, 2005; Wallsten et al.,
2005; Yechiam, Busemeyer, Stout, & Bechara, 2005). In
these investigations many data points are collected so that
the estimated parameter values for each performer are
hypothesized to be the same as the ‘‘population para-
meters’’—in this case, consistent latent constructs within
the individual. Moreover, in all of the above models, some
latent constructs are assumed to represent the internal
response style to previous payoffs. For example, in the
Expectancy-Valence model (Busemeyer & Stout, 2002),
used to model behavior in the Iowa Gambling Task
(a popular task employed in clinical and neurological
assessment; Bechara, Damasio, Damasio, & Anderson,
1994), there are three parameters: One denoting the
weighting of gains compared to losses, another denoting
the weighting of recent as compared to past payoffs, and a
final parameter denoting choice consistency (the consis-
tency between beliefs based on payoffs and actual choices).
All of these parameters are argued to measure consistent
traits in the individual’s response to payoffs. It is therefore
important to assess how much accuracy is achieved when
the model actually responds to payoffs in the task; and how
much is achieved strictly due to the reliance on past
choices. If the degree of model accuracy is not improved by
the response to previous payoffs, the estimated parameters
may be meaningless in terms of the individual’s response
style, and may reflect only mimicry of past choices.

In addition, the Erev–Haruvy critique (Erev & Haruvy,
2005) indicates that while the reliance on past choice can
improve the accuracy of the model for next-step-ahead
predictions, it also diminishes the ability to use the
estimated model parameters for predicting behavior in
different task conditions. The reason is that higher degree
of reliance on past choices reduces the relative weight on
payoff-related variables which appear to be much more
useful for predicting behavior in new tasks. Evaluating the
reliance on previous choices may therefore improve the
ability to reliably employ the parameters for predicting
behavior in different tasks.

The present paper proposes an evaluation method that
distills the overall model accuracy to choice-based and
payoff-based components. Secondly, we empirically assess
the degree of reliance on previous choices under different
learning rules and task conditions. Thirdly, we examine the
effect of such reliance on the generalizability of the model’s
predictions to different conditions (the Erev–Haruvy
critique implies a negative effect). Finally, we examine if
the current evaluation method could be used for optimizing
model parameters.

Theoretically, the predictions of a model are considered
to be based partly on previous payoffs, partly on mimicry
of previous choices, and partially on an interaction
between previous choices and previous payoffs. The goal
of the proposed method is to assess the part that is based
strictly on previous choices without the influence of past
payoffs. This part represents mere mimicry of past choices.
The current method does not attempt, however, to
disentangle potential interactions between past choices
and past payoffs. The reason is that the payoff element in
such interactions is presumably important for any potential
model that aims to capture internal responses to payoffs,
but isolating this element from the choice element in the
interaction is not always possible, because it is not always
clear how in fact these two elements interact.
The proposed method is called equal payoff series

extraction (EPSE). It uses a simulated player to assess
the degree of reliance on past choices. For this simulated
player the payoff series for the different alternatives are
made to be equal (i.e., all of the alternatives consistently
produce the exact same payoff), so that assuming no
reliance on past choices the model should not be able to
correctly predict the individual’s future choices, compared
to a random prediction. The fit of the model to the
simulated individual therefore represents the accuracy of
the model for predicting future choices based strictly on
past choices. This component of the accuracy of the
learning model (produced by the simulated player) can be
deducted from the overall accuracy (produced by the actual
individual player), to produce the improvement in accuracy
based on past payoffs. If there is no improvement at all
based on past payoffs, this implies that the model bases its
prediction and parameter estimation on past choices rather
than on previous payoffs.
The present investigation uses the proposed method to

compare and evaluate the mimicry component of two
learning rules: Delta based learning (e.g., Busemeyer &
Myung, 1992; Gluck & Bower, 1988; Rumelhart &
McClelland, 1986; Sarin & Vahid, 1999; Sutton & Barto,
1998) and decay-reinforcement learning (e.g., Erev & Roth,
1998; Yechiam & Busemeyer, 2005). The current experi-
mental evaluation of the two learning rules employs a task
in which the decision maker chooses repeatedly between a
sure payoff and two riskier prospects. This general task is
evaluated in eight conditions that differ from each other
by: (a) the expected value of each alternative, (b) the
possibility of losses associated with the riskier alternatives,
and (c) the degree of noise within each alternative. Note
that the task, although specific, has the properties needed
for the examination of the suggested hypotheses, as it
enables the examination of both model fit and generality.
Thus, it can be a starting point for appreciating whether
model evaluation with the EPSE method might reveal new
and important characteristics of these models and lead to a
better understanding of their implications.
The remainder of the paper is organized as follows.

Section 2 formally presents the current extraction method.
Section 3 presents the learning rules compared here,
previous findings, and the relevance of the proposed
method to the evaluation. Section 4 presents a new
experimental evaluation of the different learning rules.
Section 5 presents the possibility of using the present
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method to optimize parameters for better consistency and
generalizability. The discussion section summarizes the
value and limitations of the EPSE method, and the
implications of the results.

2. EPSE

Methods used for model evaluation at the individual
level often rely on optimizing the accuracy of ‘one step
ahead’ predictions generated by each model for each
individual (for an alternative approach, see Wagenmakers,
Grünwald, & Steyvers, 2006). Specifically, define Y(t) as a
T� 1 vector, representing the sequence of choices made by
an individual up to and including trial T; define X(t) as the
corresponding sequence of payoffs produced by these
choices; and define Pr[Gj(t+1)jX(t)] as the (predicted)
probability that alternative j will be selected on trial t+1 by
a model with a certain parameter vector given the previous
outcomes. The accuracy of this prediction for each choice
trial is measured using the log likelihood criterion:

LLmodel ¼ ln LðmodeljX ðtÞÞ

¼
X

t

X

j

lnðPr½Gjðtþ 1ÞjX ðtÞ�Þ djðtþ 1Þ, ð1Þ

where the term dj(t+1) denotes the alternative chosen on
trial t+1. To optimize the log likelihood for each
participant and model, a parameter search is conducted
(there are different methods; we use the robust method
proposed by Nelder & Mead, 1965). This generates a set of
solutions. The best solution is the one that maximizes the
log-likelihood criterion.

The accuracy of the learning model is usually compared
to a baseline model that assumes no learning. One model
that can be used is a random model. Under the random
model the probability of choosing alternative j from k

alternatives in the next step ahead is simply 1/k. An
alternative baseline model treats the rates as free para-
meters to be optimized (this so-called Bernoulli model is
detailed below). The final fit index is therefore a difference
score obtained by comparing the log likelihood score of the
learning model and the baseline model used (see Busemeyer
& Wang, 2000):

G2 ¼ 2½LLmodel � LLbaseline�. (2)

Under the EPSE method for each individual there is a
simulated player, which denotes an individual that makes
the exact same set of choices for alternatives producing
constant payoff series with the same magnitude. The
alternatives’ constant equal payoff is calculated as the
average gains and losses experienced by the actual player.
This payoff magnitude is assumed to be similar enough to
the actual payoffs of the individual.1

Each model’s parameters are estimated for the simulated
player as well using the same comparison with the baseline
1The robustness of the EPSE method for different payoff sizes is

examined in the study below.
model. This produces a fit score, called G02 for the simulated
player. Finally, the fit from the actual individual is compared
to the model fit for the simulated player, as follows:

G2 ¼ G2 � G0
2
, (3)

where G2 is the corrected G2 score without the component of
the fit based merely on mimicry of previous choices G02; G2

denotes the marginal increase in fit when the predictions are
not based merely on previous choices (as in the simulated
player) but also on previous payoffs (as in the actual
individual). Note that G2 is independent of the exact baseline
model used.

3. A comparison of learning models

An examination of the learning models used in previous
studies reveals that most models employ three groups of
assumptions: first, a utility function is used to represent the
evaluation of the payoff experienced immediately after
each choice; second, a learning rule is used to form an
expectancy (or propensity) for each alternative, which
summarizes the experience of all past utilities produced by
each alternative; third, a choice rule selects the alternative
based on the comparison of the expectancies (see Yechiam
& Busemeyer, 2005). Different learning rules have varying
degrees of dependency on past choices in making future
predictions. In the present study two learning rules that
posit different assumptions about the process of expec-
tancy updating are compared.

3.1. Utility

The evaluation of gains and losses experienced after
making a choice is represented by a prospect theory type of
utility function (Kahneman & Tversky, 1979). The utility is
denoted u(t), and is calculated as a weighted average of gains
and losses produced by the chosen alternative in trial t.

uðtÞ ¼W winðtÞg � L lossðtÞg. (4)

The term win(t) is the amount of money won on trial t;
the term loss(t) is the amount of money lost on trial t; W

and L are parameters that indicate the weights to gains and
losses, respectively. For parsimony, it is assumed that
L ¼ 1�W (see Yechiam, Veinott, Busemeyer, & Stout,
2007). Accordingly, a single parameter W denotes the
relative weight given to gains over losses. The W parameter
is constrained between 0 and 1, representing exclusive
weighting to losses or gains, respectively. The parameter g
determines the curvature of the utility function. In the
current study, given the small amounts of money (less than
$1) earned on each trial, the value of g was set to 1 (see also
Yechiam & Busemeyer, 2005, 2006).

3.2. Updating of expectancies

Two classes of models have been proposed to account
for the way new information is accumulated after making a
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choice (Yechiam & Busemeyer, 2005). Under one class, the
decision-maker’s representation of choice alternatives
changes only if an alternative is selected. This class of
models is labeled ‘‘interference’’ models, because the
representation is changed by relevant events and not simply
as a function of time. In a second class of models, the
representation can change even if no new information about
a particular alternative is presented (e.g., as a function of
time). This second class of models is labeled ‘‘decay’’
models. The current study contrasted two models from each
class that were found to have the most accurate predictions
in a previous study (Yechiam & Busemeyer, 2005). A Delta
learning rule was used as an example of an interference class
model, and a Decay-reinforcement model (Erev & Roth,
1998) was studied as an example of the decay class.

3.2.1. Delta model

Connectionist theories of learning usually employ a
learning rule called the Delta learning rule (see Gluck &
Bower, 1988; Rumelhart & McClelland, 1986; Sutton &
Barto, 1998). It has been applied to learning in decision
tasks by Busemeyer and Myung (1992) and by Sarin and
Vahid (1999). The expectancy Ej for alternative j is updated
as a function of its value in the previous trial (which reflects
the past experience), as well as on the basis of new payoffs,
as follows:

EjðtÞ ¼ Ejðt� 1Þ þ f ½uðtÞ � Ejðt� 1Þ� djðtÞ. (5)

On each trial t the expectancy Ej(t) is equal to that of the
previous trials Ej(t�1). In addition, if alternative j is
selected in trial t, then its expectancy changes. The formula
includes a dummy variable dj(t) which is a weight
associated with the chosen alternative. dj(t) equals 1 if
alternative j is chosen on trial t, and 0 otherwise. This
means that for all the alternatives that are not chosen, the
expectancy does not get updated. When an alternative gets
chosen (dj(t) ¼ 1), the expectancy is updated. In this case, a
change occurs in the direction of the prediction error given
by [u(t)�Ej(t)].

The parameter f is the learning rate parameter. It
dictates how much of the expectancy is changed by the
prediction error. The parameter is bounded between 0 and
1. In this range, the effect of a payoff on the expectancy for
an alternative decreases exponentially as a function of the
number of times a particular alternative was chosen.
Accordingly, recently experienced payoffs have larger
effects on the current expectancy as compared to payoffs
that were experienced in the more distant past.

3.2.2. Decay-reinforcement rule

More recently, Erev and Roth (1998) added a decay or
discount parameter to the reinforcement-learning model,
which can be represented by the following equation:

EjðtÞ ¼ fEjðt� 1Þ þ djðtÞ uðtÞ. (6)

In this learning rule, the past expectancy is always
discounted, regardless of whether an alternative is chosen
and new payoff information is experienced. This is
implemented by the fact that the past expectancy of all
alternatives Ej(t�1) is multiplied in each trial by the
recency parameter f (whose value is constrained to be
smaller than or equal to 1). The decay formula enhances
the model flexibility in mimicking past choices because it
simultaneously ‘‘pushes’’ the previously chosen alternative
(if its payoffs are positive) and ‘‘punishes’’ the unchosen
ones. Consequently, in the study below we used a three-
alternative task that increases this difference between
models compared to a binary task.
Under both models it was assumed that the initial

expectancy Ej(1) is equal to zero. In addition, it was
assumed that the unchosen alternatives gain the average
expectancy of the chosen alternative until they are chosen
for the first time (for similar assumptions in games, see
Erev & Roth, 1998; Harsanyi & Selten, 1988; Stahl, 1999).

3.3. Choice rule

In adaptive learning models the choice on each trial is
determined by the expectancies for each alternative. We
used a ratio-of-strength choice rule, which assumes that the
choice made on each trial is a probabilistic function of the
relative expectancies of the alternatives (Luce, 1959), as
follows:

Pr½Gjðtþ 1Þ� ¼
ey EjðtÞ

P
ke

y EkðtÞ
, (7)

where y controls the sensitivity of the choice probabilities
to the expectancies. Setting y(t) ¼ 0 produces random
guessing; on the other hand, as y-N we recover a strict
maximizing rule. The probability of choosing the alter-
native producing the largest expectancy increases according
to an S shaped logistic function with a slope (near zero)
that increases with y. Following Yechiam (2006), a
constant choice sensitivity c was assumed, where
y ¼ 310c

�1. The parameter c was limited between 0 and
1, permitting the full range between a random (yE0) and
highly deterministic (y4700) choices. Increasing the
bounds beyond these values does not change the results
reported below.

3.4. Model evaluation

The different models were evaluated using three meth-
ods: The conventional fit index method, the EPSE method
(detailed above), and an examination of parameter general-
izability (Yechiam & Busemeyer, 2006).
Model fit was compared to the Bernoulli baseline model.

Under the latter model the choice probabilities for each
choice option are assumed to be constant and statistically
independent across trials:

Pr½Gjðtþ 1Þ� ¼ pj. (8)

The parameters in this baseline model correspond to the
proportions of choices pooled across all choice trials. For
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example, in the current three alternative tasks the estimated
choice probabilities are p1, p2, p3 ¼ 1�p1�p2; and p1 and p2
are the free parameters. Therefore, a learning model can do
better than the baseline model only if it explains learning
effects or other trial-to-trial dependencies. The EPSE is
robust to the exact baseline used as long as the predictions
of the baseline model do not depend on the payoff. Still, we
considered it important to determine whether in practice
there is a point in using a learning model in the first place
over a model that assumes no learning.

In addition to examining model fit using the traditional
method and the EPSE method, we examined the generality
of the different models. Yechiam and Busemeyer (2006)
suggested a Generalizability test at the Individual Level
(GIL). In this method the parameters estimated in one task
are used to form predictions for the choices made by the
same individual in another task. High GIL implies that the
parameters estimated in a specific task describe the
behavior of the individual in substantially different task
contexts. Low GIL implies that the parameters are highly
task specific (or in other words are not useful to describe
the individual’s behavior in robust settings).

4. Study: model comparison under different task conditions

A controlled experiment studied the degree of reliance on
past choices under two learning rules (Delta and Decay-
Reinforcement) in four variants of a multiple-choice task,
described in Table 1. The task includes three alternatives,
one producing safe (constant) payoffs (S), another produ-
cing Medium risk (low variance) payoffs (M), and a third
producing Risky (high variance) payoffs (R). Under one
within subject condition the expected value was equal for
all alternatives (S ¼M ¼ R). Under another condition the
expected value was higher for the riskier alternatives
(SoMoR). It was expected that the move to the latter
condition (SoMoR) would lead people to take more risk.
However, following Yechiam and Busemeyer (2006) it was
Table 1

The payoff schemes of the four experimental conditions

Expected value Gain/

Equal expected value (S ¼M ¼ R) Loss

Unequal expected value (SoMoR) Loss

Equal expected value (S ¼M ¼ R) Gain

Unequal expected value (SoMoR) Gain

Each condition has three choice alternatives: S (safe), M (medium), and R (ri
expected that despite the predicted change in risk taking,
the parameters of the models would still be consistent
across different individuals; and would enable to make
predictions from each condition to the other condition.
It was further predicted that successful mimicry of past

choices would be associated with high fit in one step ahead
predictions due to the association between past and future
preferences (see Haruvy & Erev, 2002), but with low
generalizability at the individual level due to the smaller
effect of task payoffs on the model predictions. The logic
that underlies this assumption is that while reliance on
prior choices is one way in which a model can improve its
prediction, generality beyond a certain task emerges due to
consistency in the style of responding to outcomes rather
than to the style of responding per se (see e.g., Busemeyer
& Stout, 2002; Wallsten et al., 2005).
To examine the robustness of the predicted results, the

task was replicated in different forms (Following Katz,
1964). Under one within-subject condition the risky
alternative produced losses (LOSS condition), and under
another condition a constant (of 2 points) was added to all
alternatives so that the risky alternative did not produce
losses (GAIN condition). Evaluating behavior in both
situations is potentially interesting because individuals
might apply different cognitive strategies in situations
where losses are possible (Erev & Barron, 2005). Note that
in the GAIN condition all of the models are reduced to
two-parameter models because there is no parameter
indicating the weighting of gains compared to losses.
Consequently, because of the large differences between
models in the LOSS and GAIN condition, we only
compared the generalization between the S ¼M ¼ R
condition and the SoMoR condition.
Finally, as a secondary manipulation, we studied the

(between-subject) effect of adding a noise factor
(uniformly distributed between 0 and 1 and rounded to
the closest hundredth) to the payoffs indicated in Table 1.
Following Busemeyer and Townsend (1993) and Erev
loss Alternative: payoff

S: win 0

M: 50% to win 1, 50% to lose 1

R: 50% to win 2, 50% to lose 2

S: win 0

M: 50% to win 2, 50% to lose 1

R1: 50% to win 4, 50% to lose 2

S: win 2

M: 50% to win 1, 50% to win 3

R: 50% to win 0, 50% to win 4

S: win 2

M: 50% to win 1, 50% to win 4

R: 50% to win 0, 50% to win 6

sky).
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Fig. 1. Proportion of choices from the safe (S), medium risk (M) and risky

(R) alternatives in each of the eight experimental conditions in 100 trials.

2Specifically, in the LOSS condition the learning model has one more

parameter than the Bernoulli baseline model (three compared to two).

Consequently, the G2 and G02 scores were penalized by ln(N) ¼

ln(100) ¼ 4.6, where N is the number of trials.
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and Barron (2005) it was predicted that a noise factor
would decrease payoff sensitivity, resulting in greater
reliance on past choices than on past payoffs on each trial.
However, an alternative assumption is that a relatively
small noise factor might make the payoff on each trial
more salient and distinct, thereby increasing the reliance on
past payoffs.

4.1. Participants

Forty-eight undergraduate students from the Israel
Institute of Technology (24 males and 24 females)
participated in the experiment. All of the students
were from the Faculty of Industrial Engineering and
Management. All participants were paid in cash
whatever monetary bonuses they had earned in assoc-
iation with their performance. Payoffs ranged from 15 NIS
to 35 NIS (1 NIS ¼ $ 4.5). Participants were randomly
allocated to the two experimental (Noise) conditions, with
an equal proportion of males and females in each
condition.

4.2. Procedure and apparatus

Participants were informed that they would be playing
different ‘‘computerized money machines’’ (see a transla-
tion of the instructions in Appendix A) but received no
prior information as to the game’s payoff structure. Their
task was to select one of the machine’s three unmarked
buttons in each of 100 trials. The location of three
alternatives was randomized across different participants.
The number of trials was unknown to the players. Payoffs
were contingent upon the button chosen and were drawn
from the three distributions described above. Two types of
feedback immediately followed each choice: (1) The basic
payoff for the choice, which appeared on the selected
button for two seconds, and (2) an accumulating basic
payoff counter, which was displayed constantly. At the end
of each task participants were briefed as to their total
accumulated bonus.

The order of the task was partially controlled and
partially randomized. Half of the participants were
presented with the GAIN condition before the LOSS
condition and the other half were presented with the
reverse order. The two expected value conditions were
performed consecutively within the GAIN and LOSS
conditions (e.g., GAIN�S ¼M ¼ R, GAIN�SoMoR,
LOSS�S ¼M ¼ R, LOSS�SoMoR), and their order
was randomized.

4.3. Results

4.3.1. Behavioral patterns

The choice proportions under the different conditions
are summarized in Fig. 1. The results show that partici-
pants tended to take more risk (pick S less) in the
SoMoR condition (F(1,46) ¼ 12.84, po.01, MSE ¼ .
04), in the LOSS condition (F(1,46) ¼ 5.90, po.05,
MSE ¼ .08), and in the No-noise condition (F(1,38) ¼
10.22, po.05, MSE ¼ .10). Moreover, a significant inter-
action was found between the gain/loss domain and noise
(F(1,38) ¼ 6.89, po.05, MSE ¼ .08): the tendency to take
more risk in the loss domain appeared mostly in the no-
noise condition. This finding appears to be consistent with
other studies that suggest a tendency of decision makers to
prefer alternatives that produce some degree of variance
(see Sonsino, Erev, & Gilat, 2006). For conciseness, post
hoc analyses are not detailed here (for a replication, see
Erev, Ert, & Yechiam, 2006).

4.3.2. Robustness of the EPSE method

The fit indices for the competing models appear in
Table 2. The BIC correction (Schwartz, 1978) was applied
to the G2 and G02 scores.2 To examine the robustness of the
current reliance on equal payoff series, different payoff
magnitudes used for simulating data were compared.
Recall that the original payoff magnitude was the average
of the gains and losses P experienced by the player in each
condition (were P is a vector including a gain component
and a loss component). This was contrasted with payoff
magnitudes three times higher (3P) or lower (1/3P) than
the actually experienced gains and losses. The G02 scores
obtained using different fixed payoff magnitudes, presented
on two right most columns in Table 2, were almost
identical. This indicates that the measure is stable and
robust to payoff magnitude in the current task conditions.

4.3.3. Model comparisons

Our first analysis compared the fit indices for the two
learning rules across all of the eight experimental condi-
tions. The results show that whereas the fits of both
learning models were superior to the fit of the Bernoulli
baseline model (i.e., G240 across all conditions), the fit of
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Table 2

Means of the fit indices for the four compared models

Initial analysis Robustness analysis

Model Loss/gain Noise EV G2 G02 % G240 G02 (3P) G02 (1/3P)

Delta Loss Noise S ¼M ¼ R 10.5 �1.2 83 �1.2 �1.2

SoMoR 13.5 �2.0 75 �2.0 �2.0

No noise S ¼M ¼ R 9.3 �6.1 83 �6.1 �6.1

SoMoR 14.4 �5.1 83 �5.5 �5.1

Gain Noise S ¼M ¼ R 15.6 3.2 83 2.7 3.2

SoMoR 9.9 1.0 63 1.0 1.0

No noise S ¼M ¼ R 14.7 2.1 79 2.1 2.1

SoMoR .8 �9.2 75 �9.2 �9.2

Decay-reinforcement Loss Noise S ¼M ¼ R 22.3 27.4 46 27.4 27.4

SoMoR 17.9 21.4 54 21.4 21.4

No noise S ¼M ¼ R 9.8 14.2 58 14.2 14.2

SoMoR 15.6 2.1 71 2.1 2.1

Gain Noise S ¼M ¼ R 29.9 27.5 63 27.3 27.5

SoMoR 23.0 21.5 50 21.5 21.5

No noise S ¼M ¼ R 29.7 25.5 63 25.5 25.5

SoMoR 13.7 10.5 71 10.5 10.5

G2 represents the improvement in fit for the individual (compared to the Bernoulli baseline model), G02 represents the improvement in fit for the simulated

anti-individual, %G 240 represents the proportion of individuals with G24G02.

Note: G2 and G02 values in the LOSS condition are penalized according to the BIC criterion (by ln(N) ¼ 4.6).

3To the extent possible we used the exact same payoffs of the actual

player in a different condition. When the payoffs experienced by the player

‘‘ran out’’ we used a simulation based on the payoff distributions, as

described in Table 1.
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the Decay-Reinforcement model was better than the
corresponding fit of the Delta model (24.7 compared to
13.4; t (191) ¼ 3.91, po.01). However, a larger component
G02 from the fit of the Decay-Reinforcement model was
achieved based strictly on mimicry of past choices
(t (191) ¼ 9.23, po.01). Accordingly, the marginal increase
in fit G2 based on responses to payoffs was significantly
better for the Delta model (t (191) ¼ 2.91, po.01).

Another way to represent the results is by the proportion
of individuals for which G240 (or G2

�G0240). In this way,
under the Delta model, the marginal increase in fit (G240)
was larger than zero for 78.1% of the participants,
compared to only 59.4% in the Decay-reinforcement
model (Z ¼ 3.96, po.01). Namely, under the Decay-
reinforcement model for a larger proportion of the
participants (41%, about 100% more than in the Delta
model) the predictions relied strictly on previous choices
and were not improved by the addition of the actual task
payoffs. These findings were replicated across all eight
conditions. As there were no differences between noise
conditions, all subsequent analyses were conducted across
the two noise conditions.

The second model comparison analysis examined the
Generalizability at the Individual Level (GIL) of each
model. In this method the parameters of the model,
estimated in each expected value condition (S ¼M ¼ R,
SoMoR) for one step ahead predictions, were used to
generate the full simulation path in the same or in the other
expected value condition. In other words, this method
creates multiple-step-ahead predictions of each model
for each condition. One thousand simulations were
generated to produce a distribution of choice sequences
from a given model in the high payoff condition, and these
results were averaged to produce the probability of
choosing each choice option on each trial.3 We then
examined the mean square deviation of the model’s
predicted probability as compared to the observed
proportion of choices on each trial, averaged across noise
conditions and expected value conditions. We calculated
the GIL as the percent of predictions better than a random
prediction, using mean square deviation (MSD) as a
distance measure.
The results are described in Table 3 (the EPS optimiza-

tion will be discussed later). First, both models produced
better predictions than a random model in all conditions
for the majority of the participants. Secondly, the general-
ization of the Delta model (�MSD in the simulation in a
different condition) was significantly better than for the
Decay-Reinforcement model in both the GAIN and LOSS
conditions (across the two conditions, Z ¼ 1.80, po.05;
with the prediction of the Delta model being better in 57%
of the cases). The median MSD of the Delta model was 5%
lower (0.21 compared to 0.22). Therefore, although the
Delta model was characterized by significantly low overall
fit, it improved the generalization to different payoff
conditions.

4.3.4. Correlates of the reliance on past choices

We also examined the contribution of the different
components of the model fit, G02 and G2, to the ability of
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Table 3

Generalizability at the individual level (GIL): Proportions of individuals

with predictions (�MSD) superior to a random model on a simulation

under the same or a different expected-value condition (N ¼ 96)

Model Loss/

gain

Same

condition

Different

condition (GIL)

Delta Loss .59 .73

Gain .63 .63

Decay-reinforcement Loss .64 .69

Gain .54 .58

Delta—EPS optimization Loss .78 .84

Gain .67 .66

Table 4

Spearman correlations between the fit of the model in the simulation test

(�MSD) and the relative accuracy based on choices G02 and payoffs G 2

from the other task (N ¼ 96)

Model Loss/gain G02 G2

Delta Loss .04 .25�

Gain .16 .04

Decay-reinforcement Loss �.15 .27�

Gain .09 .07

�po.0125 (using Bonferroni adjustment).
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the model to produce generalizable results. For each
participant we extracted the average G02 and G2. We then
examined the Spearman correlations between the average
G02 and G2 and the fit (�MSD), across the two noise
conditions (with Bonferroni correction, a ¼ 0.05/
4 ¼ 0.0125). The results appear in Table 4. The only
significant results, detailed here, were in the LOSS
condition. The results showed that whereas G02 was not
associated with an improvement in fit in the generalization
test (GIL), G2 was associated with improved fit for both the
Delta (r ¼ 0.27, po.05) and Decay-Reinforcement
(r ¼ 0.25, po.05) models. This indicates that reliance on
past payoffs predicted the success in the generalization tests
whereas reliance on past choices did not.4

5. Equal payoff series optimization (EPSO)

The results of the current analysis suggest that the
reliance on past payoffs is useful for model generalization.
Especially, in both of the studied models the success in the
generalization test was partially predicted by the compo-
nent of fit based on responses to payoffs. A natural
question, therefore, is whether the EPSE method, which
was used to identify this component, would also be useful
for optimizing model parameters for the same purpose.
This question was examined using a prediction of one step
ahead seeking to minimize the fit of the model (above
random prediction) in the simulated equal payoff series, as
follows:

H ¼Maxf½ln LðModeljEPSÞ � ln LðRandomjEPSÞ�; 0g,

G�2 ¼ 2 ½ln LðModeljX ðtÞÞ �H�, ð9Þ

where EPS is the Equal Payoff Series (the simulated
individual), H is the advantage of a certain parameter set
compared to a random model on this Equal Payoff Series,
and G*2 is the fit of the model without the advantage H.
Namely, parameters are selected based on their fit to the
actual data but also based on their inability to succeed
4In the LOSS condition decision makers might be more responsive to

task payoffs and less willing to adopt a strategy based on mere choices

(such as ‘‘try one then the other’’, etc.).
beyond a random model in predicting choices for the
simulated equal payoff series. Moreover, this formula
ensures that a model that is inferior to the random model
on the simulated payoff series will not be boosted
artificially.
The analysis using the G*2 index was conducted for the

model showing more promise in terms of parameter
generalizability, the Delta model. To examine the impact
of this adjustment on model generalizability, we used a
simulation analysis as before. The results, presented in the
bottom rows of Table 3, showed an increase in the
proportion of better than random predictions in both
the GAIN and LOSS conditions. The improvement for
simulating multiple trials ahead in the same payoff
condition was significant (Z ¼ 2.79, po.01) and in the
generalization to a different condition it was significant on
a one sided test (Z ¼ 1.58, po.05). Therefore, the use of
the EPS criterion for estimating parameters improved the
generalizability of the estimated Delta model parameters.5

Surprisingly, the use of the EPS criterion also improved the
ability to use the parameters for predicting multiple steps
ahead in a given task.
6. General discussion

The results of the study demonstrate the value of the
EPSE method for comparing models. The EPSE method
evaluates the relative weight of past choices and outcomes
in determining the predictions of an adaptive learning
model. It was used to shed light on previous findings
(Yechiam & Busemeyer, 2005, 2006) showing that a Decay-
Reinforcement learning rule produced superior fit but poor
generalizability at the individual level compared to another
commonly used learning rule (Delta). The component in
the fit that was based on past payoffs was significantly
higher in the Delta model; and it is this specific component
that was associated with the ability of the model to produce
generalizable predictions.
Previous studies have been pessimistic concerning the

ability to meaningfully compare learning models, mainly
5The advantage of the EPS optimization method in the generalizability

test was replicated in a two-alternative version that includes only

alternatives S and M. For conciseness, this replication is not included.
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because of their high flexibility (see e.g., Haruvy & Erev,
2002; Salmon, 2001; see also Yechiam & Busemeyer, 2005).
However, extracting components based on previous
choices and payoffs provides a simple way to bridge across
different levels of model flexibility, by deducting the
accuracy that results from success in mimicry of past
choices. The EPSE method is limited however, since it
overcomes only one source of model flexibility, namely,
mimicry of prior choices; but it ignores other sources,
particularly mimicry within the model parameters (i.e.,
when distinct parameter sets make very similar predictions
on a given task). To address these diverse sources of model
flexibility, Yechiam and Busemeyer (2006) suggested that
the evaluation process should be based on an administra-
tion of multiple tasks to the same individual. This enables
the examination of the generalizability of predictions based
on model parameters across tasks. The advantage of the
EPSE method is that it does not rely on the administration
of multiple tasks. Moreover, it complements Yechiam and
Busemeyer’s (2006) method in evaluating the sources of
parameter generalizability.

A specific criticism of the use of learning model with the
‘one step ahead’ prediction method is the poor demon-
strated ability to extract parameters using this method for
simulating behavior in new tasks (Erev & Haruvy, 2005).
The current analysis suggests that one possible source of
this problem is the mimicry component; and accordingly,
one way to overcome this problem is by the use of the equal
payoff series (EPS) criterion for optimizing parameters (the
EPSO method). This criterion selects the appropriate
parameters not only according to their success in improv-
ing the accuracy of the model in predicting the next step
ahead but also for their lack of ability to fit a series of
choices made by the same player in the absence of any
payoff differences between alternatives. In the current
study using the EPS criterion in the optimization process
improved the predictive power of parameters extracted
with the ‘one step ahead’ prediction method.

Note that for some purposes the reliance on previous
choices can be beneficial. For example, as we have seen, the
ability of the Decay-Reinforcement model to mimic
previous choices improved its accuracy in predicting next
step ahead choices. Suppose then that we have a model
(Model X) that yields a really good fit but relies heavily on
past choices. Another model (model Y) yields a fit that is
much worse but does not rely heavily on past choices.
What model should be used? The current results suggest
that the answer depends on the component of the model fit
that relies on payoffs, denoted here G2. A larger G2

component in model Y than in model X is expected to lead
to more accurate predictions in tests of generalizations to
different payoff conditions in model Y. Moreover, model Y
is expected to measure individual differences in parameters
associated with responses to payoffs more reliability.

The answer to the question posed above therefore
depends on the researcher’s goal. If the researcher’s
objective is to examine the model’s predictions in different
tasks other than the one in which the parameters were
estimated, or to estimate robust parameters having to do
with the response to payoffs (and this is highly important
to studies of cognitive processes that seek to examine the
motivational system), then extensive mimicry is not
expected to be helpful. For these purposes, treating the fit
of the model as a whole, without subtracting or controlling
for the part associated with pure mimicry, can impair the
ability to evaluate different models and to estimate model
parameters.
Appendix A. The instructions for the experiment task

‘‘Hello,
In this experiment you will play a number of different

games. In each game you will operate a money machine.
Each button press will lead to winning or losing a number
of points (depending on the button you choose). Your goal
in the experiment is to win as many points as possible.
There could be differences in the number of points
produced by each of the buttons. Your final bonus will
be determined by the total number of points earned in the
game (15 points ¼ 1 Ag.). For your information, it is
highly likely that the machine would be different for each
participant.
Good luck’’.
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