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1 Introduction

We study the salient features of water management in the context of a

prototypical water economy, consisting of the main water sources and user

sectors. The term “water economy” refers to a collection of water sources

and user sectors that are entwined via physical (equipment, infrastructure)

and social (institutions, norms, laws) capital. Water economies vary in both

respects and their idiosyncratic features affect the range of feasible policies (see

the examples in Saleth and Dinar 2004, Tsur et al. 2004). Without committing

to a particular setting, we characterize the optimal water policy in terms of

intertemporal water allocations from each source to any user sector and the

investments in (physical) capital needed to carry out these allocations.

We find that the optimal policy proceeds along two stages: a most-rapid-

approach (MRAP) stage followed by a turnpike (singular) stage. In the first

stage, the capital stocks (equipment, infrastructure) are driven as rapidly as

possible (i.e., at the maximal feasible rate) to well-specified turnpike trajecto-

ries. During the second stage, the capital stocks evolve at a more moderate

rate along their turnpikes, eventually converging to a steady state. The dura-

tion of the MRAP stage is inversely related to the (overall) investment budget

and can be made arbitrarily short. Thus, most of the process evolution takes

place along the turnpikes and specifying the optimal water policy, therefore,

involves mainly specifying the turnpike policy. This simplifies the water man-

agement task considerably, as the turnpike policy includes only the water stock

as a state variable but not the capital stocks.

The primary source of water is nature (rainfall, lakes, stream flows, aquifers).

In regions where the (sustainable) supply of natural water suffices to meet hu-
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man and environment needs, water is not scarce and managing it may not be

high on the priority list. Such regions decrease in number over time due to

demographic and climatic trends. In many populated regions, water scarcity

has become critical (see Dinar and Tsur 2015), stressing the need for proper

management.

Two sources of produced water can be added to natural sources: recycling

and desalination. Recycled water is the outcome of collecting and treating

domestic and industrial sewage. As such, its supply is determined by the allo-

cation of water to these sectors. Sewage treatment is required primarily due to

health and environmental considerations, disregarding whether the treated wa-

ter is reused later on. The level of treatment (secondary, tertiary) determines

the range of feasible uses of the recycled water. These considerations bear

important implications for the allocation of water in general as well as for the

level of treatment and who should pay for the different stages of the recycling

process. The model developed herein accounts for these considerations.

Desalinization is, for all practical purposes, an unlimited source of water,

hence can be considered as a backstop technology. However, at the current

state of technology, it is an expensive source. This raises the issues of when

to begin desalination (if at all) and the extent of desalination over time. The

framework developed herein addresses these concerns.

The present effort builds on Tsur’s (2009) framework and extends it in a

number of ways. While Tsur (2009) simplified the dynamic aspects by consid-

ering steady states, the water policy characterized herein is fully intertemporal,

covering both the water allocation from each source to each user sector at each

point of time and the gradual capital investment (equipments, infrastructure)

needed to carry out these allocations.
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The next section specifies the stylized water economy that will serve as a

basis for the analysis and defines feasible water policies in this economy. The

optimal policy is shown, in Section 3, to evolve along the two aforementioned

stages and to eventually converge to a unique steady state. Section 4 concludes

and an appendix contains technical details and proofs.

2 The water economy

The water economy specified in Tsur (2009) provides a convenient starting

point. Water is derived from three main sources and is allocated to four main

user sectors. While the primary source of water is nature (rainfall, aquifers,

lakes, reservoirs, stream flows), water can be derived also from recycling fa-

cilities and from desalination plants. The four main user sectors are domestic

(residential), agriculture (irrigators), industry and the environment.1 We use

the index i = n, r, d, to denote natural (n), recycling (r) and desalination (d)

sources, and the index j = D,A, I, E, to signify domestic (D), agriculture (A),

industry (I) and environment (E) sectors.

We denote by qij(t) the supply flow (say, million cubic meter per year) from

source i to sector j in year t. The annual water supply from source i is

qi◦(t) =
∑

j=A,D,I,E

qij(t), i = n, d, r, (2.1a)

and the annual allocation to sector j is

q◦j(t) =
∑

i=n,r,d

qij(t), j = D,A, I, E. (2.1b)

Water sources

We discuss the three water sources in turn.
1Focusing on water scarce regions, we ignore hydropower and navigation sectors.
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Natural: Natural water is mostly derived from a finite, replenishable stock

Q(t) ∈ [0, Q̄], which evolves over time according to

Q̇(t) = R(Q(t))− qn◦(t), (2.2)

where R(·) is a decreasing and concave recharge function and the upper bound

Q̄ satisfies R(Q̄) = 0.2 The lower bound

Q(t) ≥ 0 (2.3)

implies that the supply of natural water cannot exceed R(0) when Q(t) = 0

(the zero lower bound is a standard normalization). The capital (infrastruc-

ture, equipment) needed to allocate (pump, treat, convey, distribute) natural

water is denoted Kn.

Recycled water: Recycled water is derived from treated domestic and in-

dustrial sewage. Let qs◦(t) denote the flow of domestic and industrial sewage

at time t. Then,

qs◦(t) = β(q◦D(t) + q◦I(t)), (2.4)

where β ≤ 1 accounts for water consumption and loss during sewage collection

and treatment.3 The capital employed in sewage collection and treatment is

denoted Ks.

The share of the treated sewage that is reused constitutes the supply of

recycled water qr◦(t). Thus,

qr◦(t) ≤ qs◦(t). (2.5)

2Allowing for multiple natural stocks, each with its own recharge process, is outlined in
Tsur (2016). If irrigation and environmental water contribute to the recharge of underlying
aquifers, the recharge function takes the form R(Q, q◦A, q◦E), where R decreases in Q and
increases in both q◦A and q◦E . In the interest of simplicity, the latter effects are ignored.

3Under current technology and practice, β ≈ 0.65 (see Tsur 2015).
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While getting rid of the treated sewage may be costless, reusing it may require

further treatment and conveyance facility (pipelines, pumps) to convey the

treated water from the recycling plants to potential users. The capital needed

by these additional recycling activities is denoted Kr.

The distinction between qs◦ and qr◦ is needed because sewage collection

and treatment, on the one hand, and the allocation of the treated water to

potential users, on the other hand, are two separate activities. The former is

(often) required by health and environmental regulation, disregarding whether

the treated water is reused later on. Reusing the treated water, on the other

hand, is a policy decision that depends on the cost of conveying the recycled

water from the treatment facilities to potential users and on the demand for

the recycled water. The treatment level (secondary, tertiary) entails restric-

tions on potential uses of the recycled water. For example, secondary-treated

water may not be allowed to irrigate certain crops and health regulations may

prohibit the allocation of any recycled water to households, i.e.,

qrD(t) = 0. (2.6)

Desalination: The supply of desalinated water at time t, qd◦(t), is restricted

only by the capacity of existing desalination plants, i.e., by the available de-

salination capital, denoted Kd.

Supply cost

The cost of water supply includes variable and fixed costs. The former

entails costs of variable inputs, such as labor, energy and material; the latter

includes mainly the cost of capital. Both of these components vary spatially

and temporally (see examples in Renzetti 1999, Harou et al. 2009, Allen et al.
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2014).

Capital (fixed) cost: Water supply from source i at time (year) t, denoted

qi◦(t), is restricted by source i’s capital stock, Ki(t), according to

qi◦(t) ≤ γiKi(t), i = n, s, r, d, (2.7)

where γi is a capital utilization parameter, indicating the maximal annual

supply of water from source i per unit Ki. The latter evolves in time according

to

K̇i(t) = xi(t)− δKi(t), i = n, s, r, d, (2.8)

where xi(t) represents investment rate in Ki at time t and δ is a constant

depreciation rate (assumed equal for all capital stocks). If a total investment

budget x̄ is imposed on the water economy, then

∑
i

xi(t) ≤ x̄ (2.9)

(unless otherwise indicated,
∑

i is short-hand for
∑

i=n,s,r,d).

Let K(t) =
∑

iKi(t) denote the total water capital stock, which, noting

(2.8), evolves in time according to

K̇(t) =
∑
i

xi(t)− δK(t). (2.10)

Let K̄(t) represent the solution of (2.10) when
∑

i xi = x̄ and K̄(0) = K(0) =∑
i Ki(0), i.e.,

˙̄K(t) = x̄− δK̄(t), (2.11)

which gives

K̄(t) =
x̄

δ

(
1− e−δt

)
+K(0)e−δt. (2.12)
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Clearly, any K(t) =
∑

i Ki(t) trajectory satisfying (2.9) also satisfies

∑
i

Ki(t) ≤ K̄(t), (2.13)

but the converse may not hold. This is so because the capital constraint

(2.13) is weaker than the investment constraint (2.9) in that the former allows

for temporary violation of the latter if at other times (2.9) holds as a strong

inequality such that (2.13) holds at all times. This distinction will prove useful

in characterizing the optimal policy.

Variable costs: The (annual) variable cost of supplying qi◦ is represented

by the increasing and convex functions Ci(qi◦), i = s, r, d. For i = n (natural

water), Cn may depend also on the stock of natural water Q, in which case

Cn(Q, qn◦) is non-increasing and concave in Q and increasing and convex in qn◦,

e.g., Cn(Q, qn◦) = Cn(Q)qn◦, where the unit extraction cost function Cn(Q) is

non-increasing and convex. These functions account for the costs of variable

inputs such as temporary labor, energy and materials.

Extensions allowing for source-and-sector specific costs, e.g., when water

allocated to households requires extra treatment or when water distribution

entails sector specific costs, are discussed in Tsur (2016).

Water sectors: demand and surplus

Sector j’s annual (inverse) demand for water is denotedDj(q◦j). This curve

measures the quantity of water demanded by sector j at any water price and

can be interpreted as the price sector j’s users are willing to pay for the last

(marginal) unit of water.4

4There is a large literature on sectoral water demands. Examples of agricultural water
demand include Just et al. (1983), Moore et al. (1994), Howitt (1995), Mundlak (2001),
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The annual gross surplus of sector j generated by q◦j (before subtracting

the cost of water supply) is the area underneath the demand curve to the left

of q◦j:

Bj(q◦j) =

∫ q◦j

0

Dj(s)ds, (2.14)

Subtracting the variable costs of supply and the investment expenditures gives

the net (annual) benefit flow at time t:

∑
j

Bj(q◦j(t))− Cn(Q(t), qn◦(t))−
∑

i=s,r,d

Ci(qi◦(t))−
∑
i

xi(t).

(As a matter of notation, unless otherwise indicated,
∑

j and
∑

i indicate

summation over j = D,A, I, E, and i = n, s, r, d, respectively.)

Water policy and welfare

A policy consists of the water allocation q(t) ≡ {qij(t), i = n, r, d; j =

A,D, I, E} and investment rates x(t) ≡ {xi(t), i = n, s, r, d} throughout the

indefinite planning horizon t ≥ 0, where qn◦(t) =
∑

j qnj(t) determines Q(t)

via (2.2) and xi(t) determines Ki(t) via (2.8). A water policy generates the

payoff (welfare)∫ ∞

0

(∑
j

Bj(q◦j(t))− Cn(Q(t), qn◦(t))−
∑

i=s,r,d

Ci(qi◦(t))−
∑
i

xi(t)

)
e−ρtdt,

where ρ is the time rate of discount. Using (2.8) to eliminate the investment

rate xi(t) and integrating by parts the resulting K̇i(t) terms yields an equiva-

Tsur et al. (2004), Schoengold et al. (2006), Scheierling et al. (2006); examples of urban and
industrial demands include Baumann et al. (1997), Renzetti (2002, 2015), Worthington and
Hoffmann (2006), Olmstead et al. (2007), House-Peters and Chang (2011), Baerenklau et al.
(2014), Smith and Zhao (2015); examples of environmental water demand include Dudley
and Scott (1997), Loomis et al. (2000), Pimentel et al. (2004), Thiene and Tsur (2013),
Koundouri and Davila (2015).
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lent form for the payoff∫ ∞

0

(∑
j

Bj(q◦j(t))− Cn(Q(t), qn◦(t))−
∑

i=s,r,d

Ci(qi◦(t))− (ρ+ δ)K(t)

)
e−ρtdt

+K(0),

where it is recalled that K(t) =
∑

i Ki(t) and K(0) is the initial (total) capital

stock. Subtracting the initial capital, i.e., purchasing it at the outset, gives

the payoff∫ ∞

0

(∑
j

Bj(q◦j(t))− Cn(Q(t), qn◦(t))−
∑

i=s,r,d

Ci(qi◦(t))− (ρ+ δ)K(t)

)
e−ρtdt.

(2.15)

In this form, the annual cost of K(t) is (ρ + δ)K(t), which accounts for the

interest payments on a K-worth loan (ρK) plus depreciation cost (δK).

We close this section with a list of properties satisfied by the functions

comprising the above water economy, to be used in the subsequent analysis.

Assumption 1. (i) R(·) is decreasing and concave;

(ii) Bj(·), j = D, I,A,E, are increasing and strictly concave (follows from

(2.14) and the property that the Dj(·)’s are decreasing);

(iii) Cn(Q, qn◦) is non-increasing and convex in Q, increasing and convex in

qn◦;

(iv) Ci(qi◦), j = s, r, d, are increasing and convex;

(v) All the above functions are twice continuously differentiable.

3 Optimal policy

The optimal policy is the feasible {q(t), x(t), t ≥ 0} that maximizes (2.15)

subject to the state dynamics (2.2) and (2.8), given the initial natural water

stock Q(0) and capital stocks K(0) = (Kn(0), Ks(0), Kr(0), Kd(0))
′. A policy
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is feasible if it satisfies (2.5), (2.6), (2.7), (2.13) and nonnegativity of q(t), K(t)

and Q(t), where qs◦(t) is defined in (2.4). As presented here, the problem is

formulated in terms of 5 state variables (Q and Ki, i = n, s, r, d,) hence is hard

to solve directly. We carry out this task by relating the optimal processes to

the corresponding processes obtained for similar problems that differ in that

the stocks Ki are treated as decisions rather than as states, hence are free of

the state dynamic constraint (2.8). In one version of these problems we also

relax the capital constraint (2.13) while in another version this constraint is

imposed. These problems are simpler to solve, and their respective processes

allow a complete characterization of the optimal water policy.

We find that the optimal policy is to drive the capital stocks Ki(t) to well-

specified turnpike processes, denoted K̃i(t), and maintain them along these

turnpikes thereafter. During the approach to the turnpike, the investment

budget (2.9) is fully utilized, hence the optimal policy is akin to the so-called

most-rapid-approach (MRAP). The turnpikes K̃i(t) are the capital stocks that

would be chosen had the Ki’s been freely determined. In actual practice the

Ki’s cannot be freely chosen, but rather follow the state dynamic constraint

(2.8) subject to (2.13). The optimal policy, it turns out, is to bring the Ki(t)’s

as rapidly as possible to the desired, turnpike processes. Similar policies,

which approach a moving target (process) as rapidly as possible, have been

studied in Tsur and Zemel (2000) who referred to them as Non-Standard Most

Rapid Approach Paths (NSMRAP), generalizing the MRAP to a fixed target

introduced by Spence and Starrett (1975).

We begin by specifying the turnpike policy and the associated trajectories.

We then characterize how the optimal trajectories approach their turnpike

counterparts by showing that they evolve along trajectories that are optimal
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to a problem referred to as the auxiliary problem. The auxiliary problem is

similar to the turnpike problem in that it treats the Ki(t)’s as decisions (rather

than states) but differs in that it imposes the capital constraint (2.13). As long

as the frontier capital stock K̄(t) lies below the total turnpike capital stock,

i.e, K̄(t) <
∑

i K̃i(t), the turnpike policy is not feasible. Requiring that the

investment budget x̄ is large enough ensures that K̄(t) increases fast enough

and eventually (at a finite time) reaches the total turnpike capital stock, at

which time the turnpike policy becomes feasible to the auxiliary problem. We

show that until that time the optimal capital trajectories evolve along K̄(t),

by fully utilizing the investment budget x̄. As soon as the turnpike policy

becomes feasible, the optimal policy switches to it, allowing a more moderate

capital growth. Of all the Ki(t) trajectories satisfying (2.13), those evolving

along K̄(t) approach the turnpike policy most rapidly (i.e., at the shortest

time). The optimal policy is therefore a non-standard most rapid approach

(NSMRAP) to the turnpike policy, justifying the use of the term “turnpike”.

3.1 The turnpike policy

Suppose that the capital services of Ki can be rented (annually) at the unit

price ρ + δ, instead of being developed gradually according to (2.8).5 In this

case, the capital stocks Ki (rather than the investment rates xi) are decision

(control) variables, leaving the natural water stock Q(t) as the sole state of the

problem. We refer to this problem as the turnpike problem, use the modifier

‘turnpike’ to any of the associated optimal processes, and denote them by the

overhead tilde “ ˜ ” symbol.

5This would be the case if investments are unconstrained, so the water infrastructure
can adjust instantly. Notice that ρ+ δ is the competitive rental rate of a capital stock that
depreciates at the rate δ when the market interest rate is ρ.
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The turnpike policy consists of the feasible q(t) = {qij(t), i = n, r, d, j =

D, I,A,E} and K(t) = (Kn(t), Ks(t), Kr(t), Kd(t))
′, t ≥ 0, that maximize

(2.15) subject to (2.2) given Q(0), where feasibility entails (2.3), (2.5), (2.6),

(2.7) and nonnegativity of q(t) and K(t). As it is single-state, infinite horizon

and autonomous, the turnpike policy can readily be characterized. With θ(t)

denoting the costate of Q(t), the (current-value) Hamiltonian associated with

this problem is

H(t) =
∑
j

Bj(q◦j(t))−Cn(Q(t), qn◦(t))−
∑

i=s,r,d

Ci(qi◦(t))− (ρ+ δ)
∑
i

Ki(t)

+ θ(t)[R(Q(t))− qn◦(t)]

and the Lagrangian is

L(t) = H(t) + ϑ(t)Q(t) + ξ(t)[qs◦(t)− qr◦(t)] +
∑
i

µi(t) (γiKi(t)− qi◦(t)) ,

where ϑ(t), ξ(t) and µi(t) are the Lagrange multipliers of (2.3), (2.5) and (2.7),

respectively, qi◦(t) and q◦j(t) are defined in (2.1) and qs◦(t) is defined in (2.4).

The necessary conditions associated with the choice of Ki(t) ≥ 0 are

∂L/∂Ki = −(ρ+ δ) + γiµi(t) ≤ 0, (3.1)

equality holding if Ki(t) > 0, i = n, s, r, d, in which case the condition gives

µ̃i = (ρ+ δ)/γi, i = n, s, r, d, (3.2)

as the shadow prices of the capital capacity constraints (2.7).

With ci(·) ≡ ∂Ci(·)/∂qi◦, i = n, s, r, d, denoting the marginal supply costs,

the necessary conditions associated with the qij(t)’s are:

Dj(q̃◦j(t)) ≤ cn(Q̃(t), q̃n◦(t)) + µ̃n + θ̃(t) + β[cs(q̃s◦(t)) + µ̃s]− βξ̃(t), (nDI)
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equality holding if q̃nj(t) > 0, j = D, I;

Dj(q̃◦j(t)) ≤ cn(Q̃(t), q̃n◦(t)) + µ̃n + θ̃(t), (nAE)

equality holding if q̃nj(t) > 0, j = A,E;

DI(q̃◦I(t)) ≤ cr(q̃r◦(t)) + µ̃r + β[cs(q̃s◦(t)) + µ̃s] + ξ̃(t)(1− β), (rI)

equality holding if q̃rI(t) > 0;

Dj(q̃◦j(t)) ≤ cr(q̃r◦(t)) + µ̃r + ξ̃(t), (rAE)

equality holding if q̃rj(t) > 0, j = A,E;

Dj(q̃◦j(t)) ≤ cd(q̃d◦(t)) + µ̃d + β[cs(q̃s◦(t)) + µ̃s]− βξ̃(t), (dDI)

equality holding if q̃d j(t) > 0, j = D, I;

Dj(q̃◦j(t)) ≤ cd(q̃d◦(t)) + µ̃d, (dAE)

equality holding if q̃d j(t) > 0, j = A,E.

The costate θ̃(t) evolves in time according to

˙̃θ(t))− ρθ̃(t) = CnQ(Q̃(t), q̃n◦(t))− θ̃(t)R ′(Q̃(t))− ϑ̃(t), (3.6)

where CnQ(Q̃(t), q̃n◦(t)) ≡ ∂Cn/∂Q and R ′ ≡ ∂R/∂Q. Finally, the comple-

mentary slackness conditions are

ξ̃(t)[q̃s◦(t)− q̃r◦(t)] = 0, (3.7a)

ϑ̃(t)Q̃(t) = 0 (3.7b)

and

µ̃i[γiK̃i(t)− q̃i◦(t)] = 0. (3.7c)
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Conditions (3.2) and (3.7c) give

K̃i(t) = q̃i◦(t)/γi, i = n, s, r, d, (3.8)

Notice that (3.8), which specifies the relation between the turnpike capital

stocks and the water allocation policy, holds also when K̃i(t) = 0.

We use ṽ(Q) to denote the turnpike value function, i.e., the payoff under

the turnpike policy given Q(0) = Q.

The water allocation conditions (nDI)-(dAE) are of the form demand-

equals-supply, with demand on the left-hand sides and unit supply cost on the

right-hand sides. As such, the latter can be interpreted as water prices. To

better see this interpretation, suppose the marginal costs ci, i = n, s, r, d, are

independent of the supply flows q̃i◦(t), i = n, s, r, d. The price of natural water

includes cn(Q̃(t)) + µ̃n + θ̃, appearing on the right-hand sides of (nDI) and

(nAE). The first term is the marginal cost component of the water price, the

second term is the capital cost component and the third term is the scarcity

component. The marginal cost component raises the proceeds cn(Q̃(t))q̃n◦(t),

which (when Cn(Q, qn◦) = cn(Q)qn◦) exactly cover the variable cost of supply.

The proceeds raised by the capital cost component, µ̃n, equal (noting (3.2))

q̃n◦(t)µ̃n = (ρ+δ)K̃n(t), which exactly cover the annual cost of K̃n. The water

proceeds raised by the scarcity component, θ̃(t)q̃n◦(t), have no contemporary

cost counterpart but rather future costs that will be borne by future users

due to higher supply cost (if Cn decreases with Q) or lack of sufficient natural

water (if Q will be depleted, following which natural water supply cannot

exceed R(0)).

The term β(cs + µ̃s), included in the water allocation conditions of the

domestic and industrial sectors (the right-hand sides of conditions (nDI), (rI)
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and (dDI)), is associated with the cost of collecting and treating sewage. When

included as a component in the water prices facing the domestic and industrial

sectors, the proceeds raised by this term cover the cost of sewage collection

and treatment. To see this, recall that each cubic meter of water allocated to

either the domestic or industrial sectors generates the share β of sewage that

must be collected and treated. Allocating q̃◦D + q̃◦I generates the (annual)

sewage flow β(q̃◦D + q̃◦I).

The term βµ̃s generates the proceeds βµ̃s[q̃◦D(t) + q̃◦I(t)], which, noting

(2.4), equals µ̃sq̃s◦(t). The latter, noting (3.2), equals (ρ+ δ)K̃s(t), or the an-

nual cost of the sewage capital, when K̃s(t) = q̃s◦(t)/γs. Likewise, the proceeds

raised by the term βcs cover the variable cost cs(q̃s◦)q̃s◦(t) of sewage collection

and treatment (and equal the variable cost exactly when cs is independent of

qs◦). Notice that only users that generate sewage (i.e., domestic and industrial

users) are required to pay for sewage, as the β(cs + µ̃s) term appears only on

the right-hand sides of the conditions determining water allocation to these

sectors.

The term cr + µ̃r, included in the price of recycled water (cf. conditions

(rI) and (rAE)), is associated with the variable and capital (fixed) cost of

recycling. Likewise, the term cd+µ̃d, included in the price of desalinated water

(cf. conditions (dDI) and (dAE)), accounts for the variable and capital cost

of desalination. When Ci(qi◦) = ciqi◦, the water proceeds raised by ci, i = r, d,

equal the variable costs ciq̃i◦, i = r, d, and it is easy to show, as shown above,

that the water proceeds raised by µ̃i, i = r, d, just suffice to cover the capital

cost (ρ+ δ)K̃i, i = r, d.

Note that desalination is often more capital intensive than recycling or
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natural water supply, in which case γd ≪ γi, i = n, r.6 This implies µ̃d =

(ρ + δ)/γd ≫ (ρ + δ)γi = µ̃i, i = n, r, so the capital cost component of

Kd exceeds that of Kn and Kr. Thus, the price of desalinated water, which

include µ̃d = (ρ + δ)/γd, is often higher than that of natural or recycled

water. If Dj(0) ≤ cd + µ̃d, j = A,E, agricultural and environmental users

are not willing to pay the desalination price and condition (dAE) implies

q̃dA = q̃dE = 0. If the same holds also for the domestic and industrial sectors,

i.e., Dj(0) ≤ cd + µ̃d + β(cs + µ̃s) − βξ̃, j = D, I, then desalination is not

desirable at all.

The term ξ̃(t), appearing on the water allocation conditions of sectors that

generate sewage or consume recycled water, is the shadow price of constraint

(2.5) and represents the scarcity price of recycled water. This term vanishes

if the constraint is not binding but otherwise can be positive. As such, it

acts as a subsidy to water allocations that increase the supply of sewage,

thereby relaxing this constraint, i.e., natural and desalinated water allocated

to the domestic and industrial sectors (cf. conditions (nDI) and (dDI)).

This subsidy encourages reallocation of natural water away from agriculture

(or environmental) uses to domestic (or industry) users, because the latter

receives one cubic meter for each reallocated cubic meter whereas agricultural

growers loose only the fraction 1−β since they get back the share β in the form

of recycled water. With β ≈ 0.65 (see Tsur 2015), the effect of ξ̃(t) can have

far reaching consequences. The ξ̃(t)(1 − β) term in condition (rI) accounts

for the dual role of the industrial sector vis-à-vis recycled water: the scarcity

price ξ̃(t) is due to the consumptive role whereas the subsidy −βξ̃(t) is due to

6Recall that γiKi is source i’s supply constraint. If desalination is more capital intensive
it requires more capital to supply the same annual flow, hence γd is smaller than both γn
and γr.
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its contributing role, as a share β of the industrial water allocation is returned

to the recycling facility in the form of sewage. The use of ξ̃(t) to subsidize

domestic and industrial users (which contribute to sewage and to the supply

of recycled water) is cost-neutral, as it is fully paid for by the ξ̃(t) component

in the price of recycled water.

The turnpike capital stocks as states driven by investments

Because the turnpike problem is infinite horizon and autonomous, the op-

timal q̃ij(t) processes can be represented as functions of the state Q(t) (see,

e.g., Leonard and Long 1992):

q̃ij(t) = fij(Q(t)), i = n, r, d; j = D,A, I, E. (3.9)

Noting (3.8), the K̃i(t))’s can be expressed as

K̃i(t) = fi◦(Q(t))/γi, i = n, s, r, d, (3.10)

where fi◦(Q) =
∑

j=D,I,A,E fij(Q) and f◦j(Q) =
∑

i=n,s,r,d fij(Q).

Noting (3.2), equation (3.10) implies (ρ + δ)K̃i(t) = µ̃ifi◦(Q(t)). The

turnpike value (the payoff under the turnpike policy) can thus be expressed as

ṽ(Q) =

∫ ∞

0

[
∑
j

Bj(f◦j(Q(t)))− Cn(Q(t), fn◦(Q(t))−
∑

i=s,r,d

Ci(fi◦(Q(t)))

−
∑
i

µ̃ifi◦(Q(t))]e−ρtdt. (3.11)

Assuming that the turnpike value is differentiable (see conditions in Benveniste

and Scheinkman 1979), the fij(·)’s are differentiable as well, implying that

˙̃Ki(t) = f ′
i◦(Q(t))Q̇(t)/γi, i = n, s, r, d, exist. It follows that

x̃i(t) =
˙̃Ki(t) + δK̃i(t), i = n, s, r, d, (3.12)
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are well defined and can be interpreted, noting (2.8), as the turnpike invest-

ment rates driving the K̃i(t)’s.

We assume that the investment budget constraint x̄ is large enough to

support these turnpike investment rates at all times:

x̄ >
∑
i

x̃i(t) ∀ t ≥ 0. (3.13)

In particular, this assumption ensures that if the turnpike stocks K̃i(t0), i =

n, s, r, d, satisfy the total capital constraint (2.13) at some time t0 ≥ 0, they

will continue to do so for all t > t0.

Convergence to a steady state

The curvature properties in Assumption 1 ensure that the turnpike trajec-

tories q̃(t) and Q̃(t) are unique.7 Moreover, because the turnpike problem is

infinite horizon, autonomous and involves a single bounded state, Q̃(t) con-

verges to a steady state (Tsur and Zemel 2014), where Q̃, K̃i, q̃ij, θ̃, ϑ̃ and ξ̃

remain constant. We denote steady state values by a hat “ ˆ ” overhead.

From (2.2)

R(Q̂) = q̂n◦ (3.14)

and (3.6) gives, using (3.14),

θ̂ =
ϑ̂− CnQ(Q̂, R(Q̂))

ρ−R′(Q̂)
, (3.15)

where ϑ̂ satisfies (cf. (3.7b))

ϑ̂Q̂ = 0. (3.16)

Noting (3.7a), ξ̂ satisfies

ξ̂[q̂s◦ − q̂r◦] = 0. (3.17)

7Substituting
∑

i µ̃iqi◦(t) for (ρ+ δ)
∑

i Ki(t), the Hamiltonian of the turnpike problem
is strictly concave in (Q, q), ensuring uniqueness of the turnpike policy.

18



Equations (nDI)-(dAE) and (3.14)-(3.17) provide 15 conditions to solve

for the q̂ij (of which there are 11 free variables when (2.6) is imposed), Q̂, θ̂, ξ̂

and ϑ̂ as follows: if equations (nDI)-(dAE), (3.14)-(3.17) admit nonnegative

solution q̂ij, Q̂, θ̂, ξ̂ with ϑ̂ = 0, then these are the steady states values; if no

such (non-negative) solutions exist, then Q̂ = 0 and ϑ̂ ≥ 0 is set in order to

satisfy (nDI)-(dAE), (3.14)-(3.17). Noting (3.8), the steady state values of

the capital stocks Ki are

K̂i = q̂i◦/γi, i = n, s, r, d. (3.18)

We summarize the above discussion in:

Proposition 1. The turnpike trajectories are unique and converge to the

unique steady states specified by (nDI)-(dAE) and (3.14)-(3.17) from any

initial Q(0) ∈ [0, Q̄].

3.2 The turnpike policy vis-à-vis the optimal policy

As a matter of notation, the problem of choosing the feasible {q(t), x(t)}

policy that maximizes the welfare (2.15) is referred to as the “full problem.”

The solution of the full problem is called the optimal policy and is indicated

by the asterisk “ ∗ ” superscript. As before, the tilde “˜” overhead signifies

evaluation under the turnpike policy.

Property 1. Suppose that K∗
i (t0) = K̃i(t0), i = n, s, r, d, at some time t0 ≥ 0.

Then, from time t0 onward, (q∗(t), x∗(t)) = (q̃(t), x̃(t)), Q∗(t) = Q̃(t) and

K∗
i (t) = q̃i◦(t)/γi, i = n, s, r, d, where q̃(t) and Q̃(t) are the optimal processes

corresponding to ṽ(Q∗(t0)), and x̃(t) is defined in (3.12).

Proof. Without loss of generality, set t0 = 0. The turnpike problem is less

restricted than the full problem because in the former problem Ki can be
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freely chosen at any point of time, whereas in the latter problem they are

state variables, driven by investments according to (2.8) and subject to the

capital constraint (2.13). It follows that every policy that is feasible for the

full problem is also feasible for the turnpike problem.

The converse, however, is not necessarily true because arbitraryK-processes

which are admissible under the turnpike problem may fail to satisfy (2.13).

This would be the case if the initial capital stocks are small, so that the initial

total capital K̄(0) falls below
∑

i K̃i(0). In contrast, if K∗
i (0) = K̃i(Q

∗(0)), i =

n, s, r, d, condition (2.13) is satisfied from the outset, and assumption (3.13)

ensures that it will continue to hold at all subsequent times. Thus, the turn-

pike policy {q̃(t), x̃(t)} is feasible for the full problem at all times. Moreover,

this policy is optimal for the full problem because a policy yielding a higher

value would give a higher value also for the turnpike problem, contradicting the

characterization of the turnpike policy as optimal for the latter problem.

The above Property implies that

v(Q,K) ≤ v(Q, K̃(Q)). (3.19)

This is so because v(Q, K̃(Q)) = ṽ(Q) and the turnpike value cannot fall short

of the value of the full problem, given the same initial natural water stock Q.

Property 1 states that if the turnpike policy is feasible, it must be optimal.

It remains to characterize the optimal policy when the turnpike policy is not

feasible. To that end, the following auxiliary problem will prove useful.
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3.3 An auxiliary problem

Consider the problem of finding the feasible q(t) = {qij(t), i = n, r, d, j =

D, I,A,E} and K(t) = (Kn(t), Ks(t), Kr(t), Kd(t))
′ that maximize∫ ∞

0

(∑
j

Bj(q◦j(t))− Cn(Q(t), qn◦(t))−
∑

i=s,r,d

Ci(qi◦(t))− (ρ+ δ)
∑
i

Ki(t)

)
e−ρtdt

(3.20)

subject to (2.2) and (2.11) given Q(0) and K̄(0), where the feasibility con-

straint are the same as those of the full problem, including the capital con-

straint (2.13). This problem is referred to as the auxiliary problem and its

optimal policy and trajectories are identified by the modifier “auxiliary” and

the double-tilde “ ˜̃ ” overhead.

The auxiliary problem is similar to the turnpike problem in that it treats

the Ki(t)’s (together with the qij(t)’s) as decision variables, but differs in that

it imposes the capital constraint (2.13), which requires introducing the capital

frontier process K̄(t) as a second state variable (in addition to Q(t)). Notice

that K̄(t) is exogenous, as its time evolution, which depends on the initial

capital stocks, is fully specified in (2.12). The auxiliary problem is thus a

restricted version of the turnpike problem. Therefore, if the turnpike policy

is feasible for the auxiliary problem, it must also be optimal for the auxiliary

problem.

Now, the turnpike policy is feasible for the auxiliary problem when K̄(t) ≥∑
i K̃i(t).

8 Consequently, let τ be the first time this condition is satisfied, i.e.,

τ = min{t ≥ 0|K̄(t) ≥
∑
i

K̃i(t)}. (3.21)

8Recall that K̄(t) initiates from K̄(0) =
∑

i Ki(0), as specified in (2.12), and the K̃i(t)
processes are the optimal capital stocks corresponding to ṽ(Q(0)). Thus, there is no ambi-
guity regarding the time argument in K̄(t) and in the K̃i(t)’s.
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Clearly, τ > 0 when K̄(0) <
∑

i K̃i(0) and τ = 0 when K̄(0) ≥
∑

i K̃i(0).

Moreover, because assumption (3.13) ensures that K̄(t) grows faster than∑
i K̃i(t), τ must be finite and from time τ onward the turnpike policy is

feasible for the auxiliary problem. We conclude that:

Property 2. The turnpike policy is optimal for the auxiliary problem from

time τ onward.

Comparing the auxiliary problem with the full problem, it is seen that

the latter is a restricted version of the former. This so because, while both

problems impose constraint (2.13), the auxiliary problem treats the capital

stocks – the Ki’s – as decision variables whereas the full problem treats them

as state variables driven by investments. It therefore follows that:

Property 3. If the auxiliary policy is feasible for the full problem, then it is

also optimal.

A question then arises regarding when, or under what conditions, the aux-

iliary policy is feasible for the full problem. The following characterization of

the auxiliary policy helps clarifying this issue.

Property 4 (Characterization of the auxiliary policy). The auxiliary processes

satisfy:

˜̃Ki(t) = ˜̃qi◦(t)/γi, i = n, s, r, d; (3.22)

∑
i

˜̃Ki(t) = K̄(t) for t ≤ τ ; (3.23)

The ˜̃Ki(t)’s are differentiable in time over t ∈ [0, τ ], hence

˜̃xi(t) =
˙̃̃
Ki(t) + δ ˜̃Ki(t), i = n, s, r, d, t ∈ [0, τ ] (3.24)
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are well defined and (recalling (2.8)) can be interpreted as the investment rates

driving the ˜̃Ki(t)’s during t ∈ [0, τ ].

Thus, although the auxiliary problem involves no investments, as the Ki’s

are determined by choice, the ˜̃Ki(t)’s evolve smoothly in time and could have

been driven by the smooth investments ˜̃xi(t), defined in (3.24). The proof of

Property 4 is presented in the appendix.

Noting (3.23), the auxiliary capital processes, defined in (3.22), satisfy the

capital constraint (2.13), hence Property 4 identifies the condition ensuring

that the auxiliary policy is feasible for the full problem from the outset, namely:

Property 5. If K(0) = ˜̃K(0), then the auxiliary policy is feasible (hence

optimal) for the full problem with ˜̃Ki(t) driven by the investments ˜̃xi(t), i =

n, s, r, d, specified in (3.24).

3.4 The optimal policy

Property 3 states that if the auxiliary policy is feasible for the full problem

then it is also optimal. Property 4 shows that the auxiliary stock processes,

the ˜̃Ki(t)’s, evolve smoothly in time and identifies the auxiliary investment

processes that could have driven them. Property 5 then identifies the condi-

tion under which the auxiliary policy is feasible from the outset. The three

properties imply:

Property 6. If K(0) = ˜̃K(0), then the optimal policy is characterized by

(q∗(t), x∗(t), Q∗(t), K∗(t)) =

{
(˜̃q(t), ˜̃x(t), ˜̃Q(t), ˜̃K(t)), t ≤ τ

(q̃(t), x̃(t), Q̃(t), K̃(t)), t > τ
. (3.25)

Notice from equation (3.23) that during t ∈ [0, τ ],
∑

i
˜̃Ki(t) = K̄(t), imply-

ing that
∑

i
˜̃xi(t) = x̄, so the investment budget x̄ is fully utilized. Thus, the
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turnpikes are approached as rapidly as possible. A special case occurs when

the water system is built from scratch, i.e., K(0) = 0, in which case K̄(0) = 0,

implying that ˜̃K(0) = 0 as well. Thus,

Property 7. If K(0) = 0, the condition K(0) = ˜̃K(0) is trivially satisfied and

the optimal policy is the MRAP to the turnpike, characterized in property 6.

While the construction of K̄(t) (cf. (2.12)) ensures
∑

iKi(0) =
∑

i
˜̃Ki(0) =

K̄(0), this condition does not imply the vector equality K(0) = ˜̃K(0). The

elements of K(0) are exogenously given (as outcomes of past investments),

while the elements of ˜̃K(0) are determined optimally by the auxiliary problem.

If past investment policies were suboptimal, the two capital vectors differ.

When K(0) ̸= ˜̃K(0) we introduce a preliminary stage during which the

capital stocks are rearranged to satisfy the desired condition. Specifically, the

capital ˜̃Ki(0) − Ki(0) is added to Ki(0), i = n, s, r, d. This rearrangement

clearly equates the initial capital of each source to its initial auxiliary counter-

part. Moreover,
∑

i Ki(0) =
∑

i
˜̃K(0) implies

∑
i

(
˜̃Ki(0)−Ki(0)

)
= 0, hence

no additional investment is needed to reshuffle the stocks. Following this stage,

the resulting initial capital stocks satisfy the condition of Property 6 and the

auxiliary policy takes over.

The optimal policy can now be characterized as follows:

Proposition 2. The optimal policy proceeds along the following stages:

(i) The initial capital stocks Ki(0) are rearranged such that the capital stock of

the i’s source equals ˜̃Ki(0), i = n, s, r, d. This stage requires no additional

capital.

(ii) Following the capital rearrangement, the optimal policy proceeds along the

following stages, as specified in (3.25):
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(a) the auxiliary policy is implemented until time τ , at which time all

capital stocks have reached their turnpike counterparts. During t ∈

[0, τ ], the optimal investments equal ˜̃xi(t), specified in (3.24), and

the entire investment budget x̄ is utilized, hence the turnpikes are

approached as rapidly as possible.

(b) from time τ onward, the turnpike policy corresponding to ṽ(Q∗(τ))

is implemented, with the associated turnpike investments specified

in (3.12).

(c) The optimal processes eventually converge to the steady state spec-

ified in Proposition 1.

4 Concluding comments

This work formulates water policy rules in the context of a prototypical

water economy consisting of three water sources (natural, recycled and desali-

nated) and four user sectors (domestic, agriculture, industry and environment).

A water policy consists of water allocation from each source to each user sector

at each point of time and the capital investments needed to carry out these al-

locations. In spite of the complex structure of the water economy, the optimal

policy rules are rather simple and straightforward, evolving along two main

stages: a transition stage, during which the water capital stocks are brought

as rapidly as possible to well-specified time-varying turnpikes (targets), and a

turnpike stage, during which the water allocations and capital stocks evolve

along their turnpike trajectories and eventually enter a steady state.

The analysis lands itself naturally to the pricing policy that implements

the optimal water allocation. The ensuing water prices are source and sector
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specific, implying, for example, that the price of natural water allocated to

households and industrial users differs from that allocated to agriculture and

environment users. Recycled water is derived from treated domestic and in-

dustrial sewage and the latter is assumed mandatory, disregarding whether or

not the treated sewage is reused later on. The implications are that domestic

and industrial users should pay for sewage collection and treatment while users

of recycled water should pay only for the cost of conveyance from the treat-

ment plants to potential users as well as for extra treatment costs demanded

by these users (but not by environmental regulation).

In general, a water price consists of three components: marginal cost, cap-

ital cost and scarcity cost – all expressed in dollar per cubic meter units. As

these components vary across users and sources, so do the optimal water prices.

The scarcity prices are associate with natural water and recycled water. The

former is obvious in regions where natural water sources are insufficient to

meet water demand. The latter accounts for the fact that recycled water is

restricted by the flow of sewage, which in turn depends on water allocation to

the residential and industrial sectors. As a result, the scarcity price of recycled

water acts as a subsidy for users that generate sewage and as a tax for users

that consume recycled water and could have far reaching implications regard-

ing water allocation. For example, it encourages reallocation of natural water

from irrigators to domestic users, as each reallocated cubic meter can generate

about 0.65 cubic meter of recycled water that is solely due to the reallocation.

Desalination is an unlimited but expensive source. Its use, therefore, is

justified only under severe water scarcity. Demographic and climatic trends

imply that the number of such regions increases with time. The model pre-

sented herein can be used to determine the onset and extent of desalination
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over time.

The broad perspective taken in this work allows a sharp characterization of

optimal policy rules, but inevitably leads to simplifications and abstractions.

Extensions are needed to allow for arbitrary number of sources and user sec-

tors, as well as to non-stationary economies with growing water demands and

improved desalination technology (see discussion in Tsur 2016). A notable ab-

straction is the assumption of deterministic water supplies and demands. In

actual practice, natural water supplies often fluctuate randomly with precipi-

tation and the latter affects some (e.g., agricultural) water demands (see, e.g.,

Tsur 1990, Tsur and Graham-Tomasi 1991, Provencher and Burt 1994, Knapp

and Olson 1995, Leizarowitz and Tsur 2012). These aspects can have pro-

found effects on optimal policies and should, when relevant, be incorporated

in actual applications.

The analytical approach of breaking a complicated problem into simpler

sub-problems, applied here in the context of water resources management, ex-

tends well beyond this particular case. Indeed, this methodology can be used

to simplify many investment problems, where complex inter-sectoral dependen-

cies render direct analytical characterization of optimal policies intractable.
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Appendix

Proof of Property 4. Noting (3.20) and letting λ̄(t) represent the costate of

K̄(t), The current-value Hamiltonian of the auxiliary problem is

H(t) =
∑
j

Bj(q◦j(t))−Cn(Q(t), qn◦(t))−
∑

i=r,s,d

Ci(qi◦(t))− (ρ+ δ)
∑
i

Ki(t)

+ θ(t)(R(Q(t))− qn◦(t)) + λ̄(t)(x̄− δK̄(t)),

and the Lagrangian is

L(t) = H(t) +
∑
i

µi(t)[γiKi(t)− qi◦(t)] + ξ(t)[β(q◦D(t) + q◦I(t))− qr◦(t)]

+ ϑ(t)Q(t) + η(t)

(
K̄(t)−

∑
i

Ki(t)

)
,

where η(t) ≥ 0 is the Lagrange multiplier of (2.13).

The necessary conditions for an optimum (with Ki > 0) include (nDI)-

(dAE), (3.6) and (3.7), with the double-tilde replacing the single-tilde,

−(ρ+ δ)− ˜̃η(t) + ˜̃µi(t)γi = 0, (A.1)

˙̄λ(t)− ρλ̄(t) = δλ̄(t)− ˜̃η(t), (A.2)

and the complimentary slackness condition

˜̃η(t)

(
K̄(t)−

∑
i

˜̃Ki(t)

)
= 0. (A.3)

Condition (A.1) can be rendered as

˜̃η(t) = γi
(
˜̃µi(t)− µ̃i

)
. (A.4)

where µ̃i, defined in (3.2), is the shadow price of the capacity constraints

qi◦ ≤ γiKi under the turnpike problem. Noting that ˜̃η ≥ 0, we find that

˜̃µi(t) ≥ µ̃i > 0 (cf. (3.2)), hence

˜̃Ki(t) = ˜̃qi◦(t)/γi, (A.5)
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verifying (3.22). Note again that (A.5) holds also when ˜̃Ki(t) = 0 (even though

(A.1) and (A.4) may not be valid in this case).

Noting property 2, the turnpike policy is optimal for the auxiliary problem

if it is feasible. For t < τ , the turnpike processes violate (2.13), inflicting some

loss of value. Thus, the Lagrange multiplier ˜̃η(t) associated with the capital

constraint (2.13) must obtain a positive value while t < τ . The slackness

condition (A.3), then, verifies (3.23). The differentiability of the ˜̃Ki(t)’s, which

gives rise to (3.24), is verified in Lemma 1 below.

Lemma 1. Under assumption 1, the ˜̃qij(t)’s are continuously differentiable.

Proof. Consider the following modified auxiliary problem:

max
q(t)≥0

∫ τ

0

(∑
j

Bj(q◦j(t))− Cn(Q(t), qn◦(t))−
∑

i=s,r,d

Ci(qi◦(t))−
∑
i

˜̃µi(t)qi◦(t)

)
e−ρtdt

subject to

Q̇(t) = R(Q(t))− qn◦(t),

Q(0) given and the feasibility constraints of the auxiliary problem except

(2.13), where the ˜̃µi(t)’s are the Lagrange multipliers of the qi◦(t) ≤ γiKi(t)

constraints under the auxiliary policy (see (A.1) above). It is straightforward

to verify that the auxiliary processes ˜̃Q(t) and ˜̃q(t) are optimal for the modi-

fied auxiliary problem (in particular, they satisfy the necessary conditions of

the modified auxiliary problem) and the associated capital stocks, the ˜̃Ki(t)’s

defined in (A.5), satisfy (2.13).

Let L(Q(t), q(t), t) be the integrand of the above objective and f(Q(t), q(t)) =

R(Q(t)) − qn◦(t). Assumption 1 ensures that L( ˜̃Q(t), q) is strictly concave in

q. Moreover, f( ˜̃Q(t), q) is linear in q. Thus, the conditions of Corollary 6.1 of

Fleming and Rishel (1975, p. 77) are satisfied, implying that the ˜̃qij(t)’s are
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continuously differentiable. It follows that ˜̃Ki(t) = ˜̃qi◦(t)/γi, i = n, s, r, d, are

continuously differentiable as well, verifying that the ˜̃xi(t)’s, defined in (3.24),

exist.
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