
Linear and Dynanaic Programming in
Markov Chains*
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Some essential elements of the N{arkov chain theory are revicwed, along
with programming of economic rnodels which incorporate }larkovian
matrices and rvhose objective function is the maximization of the present
value of an inffnite stream of income. The linear progr*mming solution to
these models is presented and compared to the dynarnic programming solu-
tion. Several properties of the solution are analyzed and it is sleown that
the elements of the simplex tableau contain information relevant to the
understanding of the prograrnmed system. trt is also shorvn that the rnociel
can be extended to cover, among other elements, multiprocess enterprises
and the realistic cases of programming in the {ace of probable deterioration
of the produetive capacity of the system or its total destruction,

D)ECENTLY there has been growing interest in programming of eco-

{\, noruic processes which can be formulated as Markov chain moclels.
One of the pioneering works in this field is Ho$,ard's Dynanzic Pragramming
and, lfarkoa Procosses [6], which paved the way for a series of interesting
applications. Programming techniques a.pplied to these problems had origi-
nall;, bEsn the d;rnamic, and more recently, the linear programming ap-
proach. Practically, a computer prograrn to execute the dynamic program-
ming calculation is simpler to prepare than one for the linear programuring
procedure. Cn the other hand, linear programming routines are readil;.
available and allow greal flexibility, as in parametric programming and
sensitivity analysis. These features can be introduced inio dynamic pro-
gramming routines, although at an increasing cost. In this article \i'e $,.ill
show the lines of similarity between the trvo techniques and investigate some
possible extensions and applications.

A finite Markov chain is a statistical model useftii in descriting various
economic phenorirena.l In this model, rre envisage a process which is in a
certain state i,'rv-here 'i:1, 2, . . . , n (ra finite), in a, partictilar .pariod or
stage, and is transformed in the next period to a state i U:i, is pernrissible).
The chain is described by an rz-order transition, or ]f arkaa rnatrix, whose ele-
ments ?)ij ate the probabilities that the process rvill go from state r to state
j. These protrabilities are independent of the past historl- of the process.

* \Ye are indebted to Hanna Lifson, nho read previous versions of this article and helped to
clarify many of its points, The article also benefited from discussions with Amnon Amir, Yakir
Plessner, and the late Yoseph Levi, and from comments by the Journal's readers. 'Ihe work
for the article was financed, in part, by a grant from the LTnil:ed States Department of Agri-
culture under P. L. 480.

1 For a rigorous and complete treatment oI }farkov chains see triemen;r and Snell [8].
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For example, let us consider a field whose state is defined by the level of
humidity of the soil (measured in discrete units). The field may be trans-
formed from one state to another with certain probabilities, depending on
crop and weather conditions [f ]. .taaitional illustrations might be a system
of pieces of equipment whose failures are a stochastic process [Z], or a
warehouse where the state is given by the level of inventory lZ, +,11.

In economic processes, with every state is associated a reward-or cost-
for example, yield of the field, repair of maehine, profits from sales of items
out of inventory. The interesting cases are those in which the transition
probabilities can be affected by action. A poli,cy will then be the rule which
dictates an action to be taken in every state. An optimal policy will be the
policy under which total expected income from the process is maximized.
In this framework, programming is the choice of an optimal policy from a
given set of alternatives. The choice can be made efficiently by either dy-
namic or linear programming methods. We will investigate the relations
between the two methods and interpret the results of the linear program-
ming calculations. We hope to show not only that linear programming is
applicable in this context, as has already been shown 13, 4, 7, 9], but also
that its interpretation throws light on the "anatomy" of the system and
clarifies understanding of its properties.

In order to simplify the discussion, we will make several assumptions to
be relaxed later in the article. First, we assume regular Markov chains, that
is, any state is probable far enough in the future. Also we explicitly assume

that the transition matrices are not decomposable, that is, that the process

cannot be split into two or more isolated chains. We further assume that a
series of processes has a unique maximum present value. The discussion is
limited to processes of indefinite duration-that is, an infinite economic
horizon is assumed.

fneome Streams

We start the discussion by noting the mathematical equivalence of three
analogous income streams2 and naming these parallel cases for future refer-
ence. As usual, an income stream is defined by its annuiLy-a, in period f.

The discounting case

Assume that a process yielding income lasts forever and that at:aofor
all l. Let r be the appropriate rate of interest and a:7/(l*r) be the dis-
counting factor. Then the worth of the source of income-its present
value-is

(1)

since 0(a(1.

z,:Lolas:ao/(1- ,,),
l:0

2 In the present context, the analogy was first introduced by D'Epenoux [4].
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The deterioration case

Assume now that income frorn the source is not constant, but deteriorates
at the rate 0, where B:a1,+rf a, and 0<B<1 (radioactive decay). 'Ihen the
present not discounted value of the source of income is

"u 
: Lo, : i g,&o : ao/(r - ts).

,:0 ,-o

The breakdown case

In this third case, consider a constant annuity, e0, as long as the source of
income exists. There is, however, a constant probability 1-7, at every
period f, that the source will be destroyed before the coming of the next
period. I{ence, 7 is the probability of survival. Here expected worth of the
income stream (not discounted) is

?., : L"y'ao: ao/(t - i.
,:0

These three cases are mathematically equivaient. Of course, they could
be consolidated into one general case which u,ould constitute a mixture of
the three. In the course of our discussion, we shall make use of the analogy
of the separate cases, as well as of the mixed casc.

It will also be useful if we note that the previous equations can be re-
written in a slightly diflerent form. Instead of (1), for example, write the
recurrence relation

(1) ?a : aoy oi o'a,
,:0

: ao* az,.

We have named this new form the two-steps form of (1). It emphasizes
that the present value of the infinite income stream is composed of an im-
mediate annuity, plus the present value of the same income stream started
one period later. Similar forms and interpretations can be given to (2) and
(3).

Markov Chains in Economic Systems

Consider a Markov chain with an n-order transition matrix P(nXn)
: [po,).Since the ?;r. elements are probabilities,

(3)

(4) X p,, :

Let the current ,t*t'" of tU"

I (i:7,2,...n).

process-state f-be denoted by a state aec-
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tor\ E,i (1 Xrz). E; is the unit row vector with the unit;r in position i. Given
a state vector E;, the vector .UrP is the probabiiity r.ector for the states of
the proeess in the sueceeciing stage. In the stage after that, tlee probabilities
will be (EIP)P:EtP2. In general, the probal-,iiities for the lth period con-
stitute the vector ErP'. .r\lso, Iet a rewa-rds row vector C(LXn): lc;] associ-
ate a,n irnmediate rewarda s,..ith every- state i. ?he present value of the next
period's reward is, therefore, aI);PC'. Thus, if the process conbinues

indefinitely, the expected present value of all future incornes-the worth of
the proeess currently- in state i-is

(b) ,,:LE;@P)tc'

:'iu, - aP)-tg,

where a is, as previousll,, the diseor-rnting factor.
Utilizing scalar notation, r-e ruay introduce the t'w,o-steps form of (5):

(5') ?.i : ci + of, pu,r,.
j:7

Starting from a state i, the worth of the process is the immediate reward
c;, plus the expected worths of the states of the next stage, discounted one
period.

To consicler all starting states, we replace E; by the unit matrix 1 and
write

(6) Z' : I(I - aP)-rgr : (1 - aP)-tC',

where Z is the (1 X ie) vector whose elements are the 3i !-alues of (5) .

In terms of the pre.,,ious section, the case presented here is the discount-
ing case, within the framen'ork of the Markovian modei. \{e shall norv rnake
use of the anaiogy to the breakdown case; this will linl< us directl;r to the
general theory of Markov chains and provide us with convenient terminol-
ogy and greater insight. Toward tiris end, considcr a process n'ith a transi-
tion matrix 7, of the order z*1, rvhich can be partitioned:

fQH'1T: | - t'L0 1l
ltnT,H(7Xn) is a probabiiityvector,0 a zero vector, sncl 1a scalar. The
Markov chain defined b;' 7 consists of two sets of states: one, transient,
lritlr the n states in Q, and one, the (rz*t) sLaLe-ergorllc. Once the process

a The assumption in the text is that thc rervard is associated s.ith the occupation of the
state. It is not difficult to incorporate thc alternative assuurption that the reward is due to a

particular transition from state i to statej [7, p. 460].
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reaches the ergodic state, it will bc rrbsorbed, there and will never re-enter
any of the transient state,s. The elemerrts of .[1 are, therefore, the probabili-
ties that the process rvould be transformed from each of the transient states
into the ergodic state. Q is the transition matrix of the transient states.

Associated with every transient set-with every rrratrix Q-is a funda-
mental square matrix, Y: lro,l.

v:(r-8)-'
The elements o;; indicate the expected number of times that a process, cur-
rently'in state i, wiil be in state 1' before being absorbed in the ergodic state
(including the current stage in the count of u.i,r). To complete the analogy,
let every transient state e carry a reward c6, &nd the ergodic state represent
total breakdown of the s;'sfism-zero income. Total expected income (reol

d,iscounted) for a process starting in state f, is

(8) ,,:ilnQ,c'
: ;), - e)-,c,

By defining Q of (7) and (8) as Q:op, we rettirn to the discounting case

and may treat the matrix aP as if it'vrere the transient part of a }farkov
process. Here we shall name tire o;i elements of Y : (I - aP)-t, Llne eapected,

discounted number of times that a process, currently in state f, will be in
state y. These numbers are finite, while physically the process will continue
for an infinite duration.

Since P is a transition matrix, the sum of every row of aP is a (see

equation 4), and thereforeall elementsof the corresponding 11 vector are
1-a, whir:h is also the sum of all rows in the rnatrix I-aP. Flence, total
discounted number of stages in any. state, starting from stater i, is b}' (A.2) in
the Appendix

n

(9) Zru:1/(r - a) (i,: r,2,'' ' ,n).
j:1

We can interpret this result, again utilizing the analogy to the breakdown
case, as follows: 1-a is the probability of breakdown of the system in any'
stage; therefore, a is the probability of survival. Hence, the total expected
number of stages before breakdown will be

(10) 1/(t - a).

The interpretation 1ve ga\re to the elements of the fundamental matrix Z
permits the rewriting of (8) as

i*,:
t:0
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(8') za:f,vaic; (i:L,2,...,n),
i-r

which can easily be verified algebraically and interpreted economically.
Frogramming will be meaningful in those cases in which a certain process

can be chosen from several alternatives. Instead of enumerating all possible
transition matrices, we consider an eapanded, matrix R (mXn):fpoid@f,
whiclr consists of /c; different probability rows for every state i, m: 16-1'ka.
The superscript d(z) indicates an action to take in state i where d(i):1,2,
. , ko.Generally, we shall eliminate, for brevity, the index i of d(i) and

wiile p4d. The action indicated by the superscript will affect the transition
probabilities (probabilities of failure of equipment, for example, can be af-
fected by actions of maintenance). The immediate reward of the state i is
also affected by the action; for example, cost of action is deducted from the
gross value of the reward. Thus, the vector C is also expanded and its ele-
ments are now c;d. An expanded probability matrix ,R of the dimension
6X2, with the corresponding immediate rewards vector C, is given in
Table 1. Thus, in the table, if in state l action or is taken, d(1)--1, the
transition probabilities are p;;1:0.20, pr21 :0.80 and the expected immedi-
ate reward is c1l : $5.00.

Table l. An expanded transition matrix with rewards

Immediate
rewards

(Vector C')

$s .00
4.50
0.00

$2 .00
2.30
0 .00

' Actions are listed by names. For example, ar is the name of the action in state 1 for
which d(1) : r.

The Markov process will be determined when a decision vector D(lXn)
is chosen, designating a d(i) value for every i, that is, specifying a policy-
an action to take in every possible state.s By deciding on a D, one chooses a
particuiar transition matrix P, out of R, for the process at hand and a corre-
sponding vector C of immediate rewards.

Programrning for maximal expected income can be performed by the
budgeting method-by listing all possible P square matrices out of E, cal-
culating, by (5), expected worth of each, and selecting the one with the

6 We shall regard the vector D, interchangeably, as either the vector consisting of the in-
dices d(i) or of the names ol the actions o1, fo, etc.

Probabilities of transition
(Matrix R)State Actionss

to state I to state 2

State 1
a1
a2
aB

0. 20
0 .00
1 .00

0.80
1 .00
0.00

State 2
br
bz
bs

0 .60
0.40
0 .00

0.40
0. 60
1 .00
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highest zr. This might be extremely laborious. Instead, dynamic or linear
programming methods may be applied.

Dynamic Programming

In this section we will follon'Hadley [2, pp. 454-460), who also provides
the proofs for the procedure described here.

To select an optimal decision vector D by the dynamic programming
method, start from an arbitrary D, call it D(1), thus sclecting a correspond-
ing matrix P(1) and a vector C(1). Now calculate a vector Z(1) of expected
present values for all starting states.

(1 1) Z(t)' : [r - "P(t)]-'C(1)': C(1)' * aP(1)Z(t)'

The last line-the two-steps form of (11)-is the matrix form of (5').
Next, check whether D(1) is optimal. This is done by the following recur-

rence procedure: define a test policy to be the policy D(1) for altr future
stages but not necessarily for the current one. For the current stage, the
test policy associates an alternative action d(z) -not necessarily in D(1)-
with state i. Now evaluate

(t2) (i:1,2,...,n).

A new decision vector D(2) emerges, consisting, foreveryi, of the d(z)x

element that maximizes the expression in (12). If ,l)(1) is an optimal policy,
then D(2):D(l). If not, calculate

(13) z(2)' : lt - "p(z)l-1c(2)"
and repeat (12) and (13) until D(k):D(k-1):fx.e D* is the optimal
policy which maximizes present value of expected incorne from the process.

In this procedure, all possible starting states are considered. Thus, D*
is invariant under different starting states-the set of optimal actions to
take in every possible state is independent of the current state of the pro-
cess,

Linear Programming

Our linear programming problem [s] will be

(14)

a. max CII'

subject to

b, MTI, : E;'

c.II)0.
6 The optimal policy need not be unique; several D vectors miglrt lead to the same maximal

present value, ft is, hon ever, not difficult to protect the computer program against cycling.

z, : max [r, * *i o,7",11)
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In (14), C is the expanded immediate rewards vector; fI is the solution
vector to the linear programming problem; ,Ea is, as previously, the unit
state vector with unity in position f . The matrix rr (nxm) is constructed of
the expanded transition matrix R by first expanding a unit matrix to a
matrix J (mxn) , rvhich consists of k6 identical .Ei unit row vectors f or every
i, and then

(15) nI : (J - oR),.

The matrices J, R, arrd XI, for a problem with two states and two actions
in each state, are illustrated below.

f_

T1AI:I
L

f oP";

oR: lon"'
I a,z|
Loprr'

_ apzrr

oPrz1lr

oPrr'l
aPzzl I

oPrr'Jill
-apul 1-oprr'

-apnr -apuz L-oprr,
- a?zf1

1 - oP"')

Table 2 is the simplex table for the example of Table 1. The matrix M
constitutes the bulk of the first section-the input-output coeffieients-to
which a unit matrix of slack variables (artificial activities) was added. The
assumption in the table is that the process is started in state 1.

lYe shall now show that the solution to the linear programrning problem
(14), like the dynamic programming solution, rvill select a policy that will
maximize expected present value of income from the process at hand.

Following the usual linear programming convention, we add slack vari-
ables and partition the vectors II and C and the matrix rll:
(16) n : [[" II, II,], C : lC, Cn 0], lt : lM, tf " Il,
where s is the index of the part in the basis, and o is the index of the part not
in the basis. By (14) and (16),

(17)

and

(18)

M"fr,',*Mofio',:9.'

II"' : 11"-tgt' - M"-lli[uTlo'
: Mr_!Et,

since fI,:S.
It was shown by Wolfe and Danzig [O] tUat the linear programming pro-

cedure assures that, in (18), M"-1: [{Z-"f";-r1', where P" is a transition
matrix selected from.R. This means that there will be exactl;, one column in
M, for every possible starting state. We repeat, for completeness, the es-
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sence of the proof: since E;)0 and II,:9, then (f4.c) and (17) can be
simultaneously maiutained only if every row of ,01, contains at least one

nonnegative element. The only positive elements in trl are of the form
L-ap1rd, of which there is one in every column. The matrix tr[" is of the
order z; it has n columns, each with exactly one element of the form
l-o?ooo. It also has n rows, and must, as stated, have at least one non-
negative element in ever}, row. Hence, it will have exactly one element of
tlre form 1-ap.t;d in every row. Therefore, there will be exactly one element
1 - op ooo in every row and column of trI 

", 
which completes the proof .

Equation (18) can now be written as

(1e)

and, therefore,

(20)

rI"' : [(1 - aP")-tf'E;',

cTt, : cl(I - aP")-11',81',.

Cornparing (20) to (5), we see that CfI' is the worth of a Markov process

currently in state f. The maximal value of CII'-the value of the objective
function in the solution to (14)-is the maximal worth of a system of
Markov processes.

The solution to (14) determines a policy vector, D,, which can be con-
structed by observing the vectors in the basis. It stems from Property 7 of
the next section that D" is not affected by the starting state of the process.

Thus, D, of linear prograrnming, like D* of the dynamic programming solu-
tion, is an optimal policy vector. The same expected maximal present value
is reached by the linear and the dynamic programming methods and, if
there is only one unique optimal policy vector, then D,:;)x.

In the next section we shall investigate some of the properties and possi-
ble interpretations of the simplex routine and elaborate further on the lines
of similarity between the dynamic and the linear programming rnethods.

Properties of the Simplex Solution

It will be convenient if we state here the criterion function of the simplex
routine-the Z-C row vector-
(21) Z _ C : C.MS-IIM" IW' I] _ [C" C' O]

: c,ll Mu-rM" M"-rf - [c" c, o]

: lo C,M;tMo - Co C"M"-r7.

Reference to the element of (21) is made in the discussion that follows.

Property I
As was previously explained, by programming for a D, we select a transi-

tion matrix Pu and M ,: (I-aP")'. Therefore, by (7),
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L[,-t-[(l-"r,1-,1'
: [1r - 4;-t1'
_V"

where / is the fundamental matrix associated with the "transient" matrix
aP". 'Ihus, in Table 2, consistent with the terminology introduced in the
section "Markov Chains in Bconomic Systems," the expected discounted
numher of times that a process, currently in state 2, will be in state 1 is
3.971, and in state 2 is 6.029.

Property 2

By equations (22) and (9), the sums of the columns of M"-1 are 1/(1- a).
In Table 2, a:o.9,1/(1 -a) :10, and the sums are

column d; 4'706 * 5'294 : 10

column cJu: 3.971 + 6.029 : 10.

Property 3

Let u;ro be the simplex table element for row i, state k, and o a value for
d(/c) outside the basis. Thus z;7.o is defined by M"-rM": [ur.']. Fo" exarn-
ple, in Table 2, column 62, last section, upz:0.132.

B;, Property 7, Ltr"-rMo:V'trf'. Therefore, in scalar notations a.nd

denoting by p,io the transition probabilities in M, (thus pt;' is the prob-
ability of transition from 'i to j N,ith action o),

(2:3) LL4yo : - \uiopr,i'* u*;(l - ap*to)
i*k

: t.)ki - ol pr;u1,
j

(k:1,2,. .,fl).

Examining the last line-the tw,o-steps form of (23)-one recognizes that
rii,r'is the di{Terence between (a) t}ie expected discounted nurnber of times
that a J)rocess, cumently in state fu, will be in sta.te i-if the present polic;,
is adopted (ooo), and (b) the expected discounted number of times that a

process starting in state /c rnill be in state i if the test policl,, vrith action
d.(k):o for the current stage and the basic policy for all future stages, is
adopted. Action o is taken once and the basic polir:y D, is follorved for all
other stages. Ilence, zl;ro is the marginal rate of suhstitution of the present
(ba.sic) policy to the alternatiae policy with a.ction o for state /c in all stages.

The substitution is in the decision veetor D, and it is "marginal" in that
ther alternative policy is adopted for only one stage-the current sta,ge.

Property 4

The sum of the elements in every eolumn of the simplex table is unity.
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For actions in the basis this is obvious-these columns are unit columns.
For actions not, in the basis, the sums of the elements of the matrix XI"-tlIo
are also unity. Since the burn of every colurnn of the matrix ,Lf is 1- a, there-
fore, b;, A.2 in the Appendix, the sums of the columns oI M,-r are all 1/
(1 -").Hence, by A.1 of the Appendix, the column sums in XI"-rl.Ioare

(r - q)/(1- a) : l.

For example, in Table 2, column a1, the sum is

1.133-0.133:1.0.

Making use of (23), we vrrite the column sum as

(k : 1,2, , n),

The sum in the right-hand side of the flrst line of (Za) is the difference in
the total discounted number of stages under the t'lr,o policies-the basic
policy and the test policy. In general, the total diseounted number of stages
is the same under any policy (Property 2). The difference in (P4), which is
unity, stems from the fact that the count of stages for the basic policy in-
cludes the current stage (the sum in equation 7, for example, goes from zero
to infinit1,), whereas for the test policy the count starts from the next stage
and omits the current one.

Property 5

The dual values, the elements of the row vector C"lfu-r, are the values of
the alternative objective function, under the basic policl., for all possible
starting states. If we write the element i; of this vector as zr8 and denote by
c;u the element of C", the dual values are

(25) zr"u : T.cf?tne (fu: 1,2,. ,h),

which is exactly (8/). In ,O" r*0r", 81":$34.118-the value of the objective
function for a process starting in state 1; a2,:$31.912-the objective func-
tion for a process starting in state 2.

Property 6

The elements in the Z-C row for actions not in thc basis (Zl) are
c "lr "-LM o- c o.

For a state /c and action o, we shall denote these elements in the criterion
function as zho-cko and write in scalar notation

:1
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(26) zlio - c1,o - - 4- z*"(L - ap*no) - cpo

: zk" - (* * *Z,prfr,') (h:1,2,...,n).

The term in the parenthesis in the second version of (26) is the two-steps

form of tlee objective function, for a process in state A, under the test policy.

The alternative poiicy-rvith action o for stete A-will be adopted through-

out all future periods if thc value of (26) is negative, that is, if the test

policy is superior to the basic polic3,. Since the process lasts forever, if
action o for state li is superior for the current state it will also be stiperior in

any futute sbate. 'Ihis principle is, of course, the rationale behind the dy-

namic programming procedure, outlined in the section, "I)ynamic Pro-

gou*-irrg.;' It is evident now that the criteria for changing a policy, from

ileration to iteration, are the same in the linea.r and in the d;rnamic pro-

gramming techniques. Tire one difference, holvever, is that in the simplex

methocl of linear programming one element of D is replaced at a time,

s,hereas in clynamic programrning a nery vector D is constructed at every

iteration, which can differ from the previous policy by several elements.

Froperty 7

The optimal policy is not affected ty the starting state of the process. To

see this, one must show that a change of Ea to Eirvill not alter the basis of the

linear programming solution. Denote a solution vecbor associated n'ith the

starting state i b1' rl"(i). \\re know [s, p' rsa] that

(27) II,(?) : l,[,-rgr' u 
'

is a feasible solution for a starting state z, and that a change of E.; to Ei will
not alter the optimal basis, -&{", if, in addition to (27),

(28) u,(J) : M"-181') A.

The condition in (2S) is maintained, since all elements in r11,-1-the ori

elements-are nonnegative.

Extensions and Applications

A multiprocess system

Generally an enterprise wiil not be a single process hut will constitute a

system of many processes-fields in a farrn, for exanaple, or nrachines in a

factory, or units of an operating army. trf i'i'e assume that these processes

are iniependent antl let al be the number of processes, at present in state

'i, in an enterprise, then the total worth of the enterprise is

I apxfzi"
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(2s) 6r:inp;,
d:1

where z;" is defined as in (28). w can be easily carculated from the dual
values of the linear programming solution.

Alternatively, a direct approach can be implemented: define a state
vector E(lxm) whose elements are the @i values (the vector .u; is now a
particular value of B), and instead of (f ) solve as follows:

(t4')

o max CII'
subject to

MfI' : E'
r)0.

The maximal value of the objective function in (I4l) will be Lhew of (e9).

A decomposable system

up to now' we have assumed a system that is not decomposabre. This
need not be the only case. rf the matrix M is decomposabre, and if, say,
D;:Et then (r4.b) will be

(30)

The elements of rrz in (30) must be zeros by the formulation of the prob-
lem. The second chain will not be programmed at all.

To avoid this difficulty, it has been suggested [], z] that, even in cases of
single-process systems, (r4') be solved with an arbitrary nonzero z-the
vector on the right-hand side. The optimal policy is not affected by this
device. The calculated value of the objective function depends, of course, on
the selected values [or E.

An inferior state

Another assumption was that chains were regular, that their fundamental
matrices had no zero entries, that all states were probable far enough in the
future. rn practice, one might encounter states which are economically
inferior and can be avoided-small inventories, for exampre, or old ma-
chinery. rf it is possible, and the appropriate actions are specified, a policy
will be selected that will avoid the inferior states. If the process is started in
such a state, it will leave that state in one or a few periods. As an example,
consider, in Table 3, a new expanded matrix construeted from Table iby
eliminating, for simplicit/, a3 and bs and adding a third state.

il[Ir 
'*,
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3. An expanded E matrix with an inferior state

Probabilities of transition Immediate
rewardsActions

State 2

0 .00
0.00
0.20

0.00
0.20

$s.00
4.50
0. 00

$2.00
2.30
1 .00

$4.00
4.50

State 3

Programming,T one finds that the optimal policy vector, D", of this pro-

cess consists of at, bt,and cr and the corresponding transition matrix is, there-

fore,

10.20 0.80 0-1

p,:lo.oo o.4o ol.
Lr.oo o,oo oJ

An absorbing state

As experience teaches, some policies may lead to irreversible, and

sometimes destructive, results. A particular crop rotation will not protect

the soil and a heavy rain may cause erosion and destroy all future possibil-

ity of cultivating the field. A monopolist may charge high prices that will
breed rival flrms. These are breakdown cases whose Nfarkov matrices are

tike ? of the section "Markov Chains in Economic Systems." Some reflec-

tion, and the example below, will show that "destructive" policies may

sometimes be optimal. In fact, whether they will tre chosen or rejected de-

pends, all other things being the same, on the discounting rate-the higher

ihe rate of interest, the more probable it is that a "suicidal" policy, which
yields high income until destruction, will be adopted.

As an example, consider the expanded R matrix given in Table 4. Note

that the reward for the third, absorbing state is zero and that no possible

action is attached to this state, which stands for the collapse of the economic

system. The optimal policies for this system are listed in Table 5. Also given

in Table 5 are the probabilities that a process starting in state 1 will be in
an), of the states at some specified I period. Once action or is introduced, the
process must end in state 3.

7 We took a:0.9 in this case too.

to state 1 i to state 2 i to state 3

0.20 I o. eoal

a4

bt
bz
b4

States

State I
0.00
0.00
1.00

0.60
0 .40
0 .80

0 .40
0 .60
0.00

ol
C2

1 .00
0.10

0.00
o.70
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Table 4. Expaniled ,aatrix with rewards, possibre breakdown case

Pro'oaL,ilities of transition

to state 1 to state 2 to state 3

Immediate
rewards

0.40
0.70

0 .30
o.40

0. 55
0 .30

0.50
0.60

0.05
0.00

0. 10
0.00

$6.00
4.00

$s.00
3.00

0. 00 I .00,, I Eo.oo _
The right-hand section of the table lists the expected number of tirnes

(not discounied) that the proeess wiil be in any of the states, under the
opt,imal policies. The nurnbers in the parentheses are the standard devia-
tions of these numbers [8, chap. s]. Thus, in Table d, in tire lorver section,
under policy trr&r, the numbcr of tirnes that a iirocess starting in state 1 wiir
be in state gis7.3i*7.49: the standard deviations are quiie high in rela-
tion to the expected r.alues. l-*ncier poiicy a2b2,Lhe process ri,ill never reach
the absorbing state and rvill be an infinite nuiriber of times in both states 1
and 2.

Depletion and deterioration

The Iast secticn deslt rn'ith a system with a possible breakdown case.
t{ore probable tiran the sudden "death" or collapse of the econouric process
is the possrbili'i:,1- of depletion or decay of prcductivity-the deterioration
case. A particular crop rota,tion wili gr*cluall;, i'rnovcrish the field; pump-
ing of coas'r;r1 groundx-ater damages the quality' of that source; a certain
nia"int,ellance routine results in a gradual reduct,ion of inccrle fron an asset.
rn soine respects depletion arrd deterioration are "historicai,, pher.romena,
alien to Liic }{a,rkovian assumption of indcpencence. I{owcr.er, by uti}izing
the analog;' of tlie dei,ericration case to the other i,wo cases (in tle section
"Incorne streams"), one rnay incorporate realistic tl,pes of these phenornena
into our moclel.

Assume, for simplicit.y, a zero rat,e of interest, namei;- a:1, and let in_
come, productivity, service, etc. fi'om the econoinic process deteriorate at a
rate 1-13(0<p<1) per period. Expected, not discounted, r,orth of trre in-
come stream is

(31) a: L Ed@p)tc,
t:0

: E"(I - pP),C'.

nfore interesting will be the case in which the rate of deterioration is not

States Actions

State 1 al
a2

State 2

State 3

br
bz

0.00
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just one rate for the process but differs from state to state. Now, at the
period in which the process occupies state i, its productivity deteriorates at
the rate B;. For example, expected income from the uext stage of a process,
currently in state i,is B;l.porci: Di|tp;ici, or, in matrix notation, EiBPC',
where B is a diagonal matrix with,6e on the diagonal and zeros elsewhere.

Expected value of an everlasting process is, therefore,

(32) Ei(BP)'C',

: Er(I - BP)-tg'.

It is easily seen now that to allow nonzero rates of interest, one simply
incorporates ain (32) to form

(33) z;: Ei(I - aBP)-rgr.

For alternative policies and programming, B is expanded to allow p.<di,)-
deterioration is a function of state and action.

Growth and appreciation

If deterioration is represented by 0,.( 1, growing productivity or apprecia-
tion can be represented by 0;) l. In fact, (33) applies to cases of apprecia-
tion so long as d/;d <1 for all i and. d. lf aB;d) 7 for some i and d, the exis-
tence of the inverse matrix of (33) is not assured; that is, z6 in (33) need not
be finite. Programming is, however, still possible by, for example, con-
sidering a finite horizon. We shall not pursue this subject ftrrther here.

Concluding Remarks

We have tried to show that the }farkov chain model may be used in a
variety of economic applications. The discussion of the linear programming
solution has facilitated, we trust, better understanding of the Markov
process and of the rival dynamic programming method. An unsolved prob-
lem is that of the incorporation of the regular linear programming limita-
tions and requirements into the present model. The difficulty lies in the fact
that the solutions to the Markovian systems are in terms of expected num-
bers, while the actual magnitudes will change from period to period and
may under- or overshoot limitations and requirements, if such exist. We
hope to return to this question in the future.

Z;: Z,
,:0

A. I
Let .

column
B:lbni ,rrd F: ffr]
. sums: I;btt:s (r: l,

Appendix

be n-order square matrices with constant
2,.- ., n) andLtoi:t (i:7,2, ' . ., n).If
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we let the matrix G: [soil be the product rnatrix of B and F(G:B.fl, then
the column sums of G are all sl.
Proof:

: EZu,rfo,
i/r

: f,.;*; f b,,
ki

: s I.i,
h

a.2
If we let H:ftr.q) be the inverse ruatrix of B(H:B'1), then lih;i:7/s

k:1,2, "',n).
Proof:

BH:I
E f, bi1hv,: L

ii

Ia"Ibii:r
ii

sfhro:1
i

Lhir: l/s'
i
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ABSTRACT

This paper presents a formulation of an applicable linear programming model for a growing economic unit.
The model covers all aspects of activity of such a unit: production, investment, consumption and credit
operations. Alternative consumption functions are incorporated. Particular care is taken to make the sug-
gested system consistent with economic theory, and it is shown that correct formulation will yield solutions
which maintain temporal equilibrium throughout. Diversions from the correct formulation are also analvzed.

This work is an attempt to construct a programming
model of optimal resource allocation in an economic
unit over time. Particular care will be taken to make
the model practically applicable as well as theoretical-
ly sound. There is no need to dwell on the importance
of the problem of dynamic resource allocation. It is
relevant to the understanding of the behaviour of the
household, to the budgeting of the firm and to plan-
ning of economic development. We hope that this
paper will be a contribution toward better solutions
of problems in these areas.

Our point of departure will be Hirshleifer's .,On

the Theory of Optimal Investment Decision,, (195g),
where a model first suggested by Fisher is extended.
This work is well known and it will not be reviewed
here. It will suffice to remind the reader that Hirsh-
leifer found that investment decisions should always
be made simultaneously with consumption decisions
of the economic unit. Hirshleifer's model is a theo-
retical analysis employing indifference curves and con-
tinuous transformation curves. We shall present a
translation of his analysis into a mathematical pro-
gramming model. Such a formulation has already
been suggested by Baumol and Quandt (1965), whose
model includes the businessman's welfare function in
the objective function of the linear programming
problem. They made Hirshleifer's case into an applic-

able programming model only in a very limited sense,**
since welfare functions are not observable, and we
doubt that many businessmen can formulate their
own function.

We shall try to introduce observable consumption
functions into the programming model, discuss the
difficulties that arise and suggest practical solutions.
Our model will be more complete than Baumol and
Quandt's in covering financial and current produc-
tion aspects of the economic unit, as well as investment
activities.

The Appendix presents a three-year simplex tableau
of what we call Probelm IV which should make it
easier for the reader to follow the mathematical formu-
lations of the models.

A PROGRAMMING FORMULATION OF HR.SHLEF'ER'S CASE

We start by introducing some notations which will
also be used in subsequent sections. We adopt the
notational convention of using capital letters for
matrices only. Lower case letters are vectors, unless
indicated otherwise. Greek letters denote scalars.
Let
xf : level ofcurrent production activities att,t : 1,2,

...,7;
xi : level of "real" investment activities started at /;

* we are indebted to Hanna Lifson, Eitan Berglas, Yair Mundlak, Dan Yaron and the anonymous referees for their comments and help.
The work for this paper has been flnanced, in part, by a grant lrom the United States Department of Agriculture, under p.L. 4g0.** Ophir suggested a capital accumulation model of similar nature, but did not consider consumption as an endogenous variable.

JJJ
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Qt : amountoffundslent("financial investment") at f ;

dl : u-ornt of funds borrowed at /;

lt : income* zt t,t : 1,2,..., T - l;
ct : consumPtionatendofyeart,t : 1,2,...,7- l;
fr! : lending discount tate at t;
p? : borrowing discount rate at t;
@ : wealth at the horizon T;

A! : matrix of input coefficients related to limited

factors per unit of current production activ-

ities at r (technologY matrix);
Al, : the technology matrix describing input re-

quirements at , per unit of investment activ-

ities started at r I t;
B'"t : a matrix describing outputs of investment

activities in the same fashion as A'", describes

inputs;*t
ki : pecuniary requirements per unit ofcurrent pro-

duction activities at r;
ki, : pecuniary requirements at r per unit of invest-

ment activities started at r 3 t;
ltt : amount of funds available exogenously at /;

er : available quantities of production factors at

t:l;
et : the non-obsolete portion ol q, at t (t : 2,

3r"'rT);
ri : residual value at the end of T per unit of in-

vestment activities started at" r A T;

O : value of q, at the end of T;

r! : revenue per unit level of current production

activities at t.

Thus an investment project, in the present model,

does not directly contribute income but adds to the

stock of reproducable assets of the economy (see

Appendix). It should be noted that we can take care

of depreciation by adjusting the elements of q, and

Bi,. Anticipated technological changes are indicated

by the fact that the technology matrices are sub-

scripted by r.

We do not have to assume constant interest rates'

Declining lending or, what is more often the case,

rising borrowing rates can be introduced via continu-

ous or step functions without changing qualitatively

any of the subsequent results.***
Problem I (Hirshleifer's case) is to maximize

F(cr,c2,. .., Cr-rl)) (1)

subject to

'rf-$f-' - 0{-,0{-, + Pi-,0?-1 * c,-1 *
+ klxl + L,kitxi + Ot - 0! < rr, Q)

Alxl + L,Ai,*i - L,Bi,*i < q, (3)

- rprxpr - p{O++ p+0+ -Lr'"r: * ro S O (4)

t:1,2,...,7
and non-negativity of all variables, where F is the

time preference function.

Some remarks, which will apply to subsequent

models as well, are in order. First, for r : 1, only

the last four terms of (2) are relevant. Secondly, from

the formulation it seems as if we assume all credit

to be on an annual basis. This is done only for nota-

tional convenience. However, even if such an assump-

tion were really necessary it would merely imply a
"perfect" finance market in the sense that the bor-

rower is certain of being able to secure whatever

amounts he deems profitable in any future year' In
general, any short and long run combinations of

borrowing or lending options can be introduced as

any experienced programmer will recognize.

The present formulation differs from Hirshleifer's

in one important aspect. He considers only the trans-

formation curve-the efficiency frontier-and leaves

the individual projects that give rise to this curve in

the background. This raises difficult questions for

longer then two year periods (see Bailey's extension

of Flirshleifer's analysis (Bailey, 1959) ) which are not

encountered in this programming model. As usual,

the individual activities are independent; that is,

projects are not mutually exclusive. Mutual exclusive-

ness may be treated by formulating alternative pro-

grams and choosing the best (compare lo Hirshlefer,

1958, fig. 5).t

?

e

T

I

* Both y, arld c, are, of course, scalars.

+* The assumption that inputs and outputs of investment activities can be described by disjoint matrices is made to avoid more notational

complications.
*** For example see Yaron and Heady (1961), Plessner and Heady (1965)'

i See also weingartner (1966), who discusses extensively programming of mutually exclusive investment projects, but assumes an exogenously

given discount rate.
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Finally, even if the time preference function is
given, application involves difficult problems. Future
prices and technology, and in particular residual
values of assets (ri), have to be assessed. This, however,
is common to all long run practical models; and, in
fact, every businessman making an important decision
is, explicitly or implicitly, predicting future economic
magnitudes.

Since the internal rate of return plays a pivotal role
in the subsequent discussion, we think it instructive
to show how it may be theoretically calculated from the
solution to the problem. To this end we associate with
(2) the "shadow prices" )1, with (3)-the vector u,,
and with (a)-the imputed value 4.

Consider the lending activity of year T We define
the internal rate of return, in an obvious way, by

r+P{:P+.

If lending actually takes place, then the dual equation
associated with the activity reads

)t - 0h:0
from which

Next, consider an investment activity started at the
beginning of ? We deflne

r+p'r r'; - (atrruTht)
(6)

k'i,

where ri and k';, are elements of r,, and k,rr, respec-
tively, a'r7 being a vector of A,rr, (r,1, k?, and a,;, be-
long, of course,to the same activity column. We avoided
the identifying column index to simplify notation.)

This deflnition is, to be sure, a common one. The
division of u, by 4 is appropriate because the costs
of inputs have to be expressed in values of the end of
T While u. is in terms of dollars at the horizon, 4 is
the value to the economic unit of a dollar at the end
ofT

If the activity under consideration is operated, the
relevant dual equation reads -

k'ir)r+a'rrur-r?q:O

335

from which, taken together with (6),

A comparison of (5) and (7) reveals

l+P'r:l+P+.
In general, it is easy to check that the internal rate

of return will be the same for every investment proiect
which is undertaken and will be greater than or equal
to the "going" (market) interest rate in lending op-
portunities.

An internal interest rate is also implicit in every
production activity. We define this rate in year t, p!,by

r+py: r!'- al(u,l7l * 1)

Writing the appropriate dual equation, and assuming
that production takes pldce, one finds

:L
At

\ :l+pl. (9)
A|+t

Similarly to (8), we can define I + pl for every /-
the internal rate of returns of investment activities-
which will also satisfy (9). The equality of the rates
of all operated activities is kept, as the reader may
check, for every year t. It is, therefore, possible to
define a common rate of discount, p{ for the year t,

OPTIMAL PATTERNS OF INVESTMENT, PRODUCTION AND CONSUMPTION-

€J

(7)l+p'r-)+
4

(8)
kr

)

1 + p{: p+: L (5)
q

Also,

(10)

(1 1)

1LA-o!: '-1.
)'i *,

0l>r + pf>p{,

b

as Hirshleifer has shown. From (7), (9) and (10) we
get

)f : ,r II (t + pf), (12)

the financial shadow prices are the compound rates
of interest multiplied by the value of the dollar at
the horizon.

Finally, an immediate result from the dual equa-
tions is that the marginal rates of substitution between
consumption in any two successive periods is given by

0FlAc, dc,*,
AFlAc,*, dc,

as one would expect.

)t -,- )f -r: - (l + P!*)'
(13)
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t!:ot

subject to (2), (3), (4) and

cr2 cf

(14)

(1s)

- #: - (1 t pI*,)'

PREDETERMINED CONSUMPTION OUTLAYS

As pointed out already, time preference functions are

generally unknown. In the simplest alternative model

we suggest, consumption is only a function of time

and independent of income.

Let c! denote the minimum annual consumption

requirement. Then our Problem II is to find non-

negative values which maximize-

unsatisfactory. Theory and practice teach that con-

sumption is a function of income and wealth and not
just a predetermined outlay, We shall now present

two versions of our model with consumption as an

endogenous variable. In the first version we assume

the Keynsian consumption function,

ct:dt+ llt. (1e)

In the second case we let consumption be a function

of the worth of the assets of the programmed economy

at the horizon,

ct: dt I rca. (20)

Both (19) and (20) are observable. Similar functions

have already been estimated (Ferber, 1966). They are

suggested here as "proxies" for the unobservable wel-

fare function.
We now turn to incorporate these functions in our

model. Starting with (19), note that income is, in
our case, a linear combination of the operated activi-

ties.

!,: (r! - kilx? + (p{ - Do{ - $? - \o? Qt)

: z,xl + p[O{ - pihi.

This makes possible the formulation of Problem

III: Maximize (14\ subject to (3), (4) and

- (r! -r - rzt-)xf -, - [1 + (I - v)p{ -J0{ -, +

+ [1 + (r - v)pl-JLl-, + klxl + | ki,xi +

+ O{ - 0l < t', - dt-t ' (2')

Consumption appears in Problem III, implicity, as

a leakage-in (2') only the amounts not consumed

(gross saving) are carried over to next year. Equation

(2') makes sure that the funds diverted to consump-

tion will be determined bY (19).

The formulation of Problem III is quite convenient'

It will, however, cause misallocation of resources in

the programmed economy. To see this, we turn to the

dual.
As in Problem II, 4 : l' Internal rates of return

are defined as in (6) and (8). However, writing the dual

equation for an operated production activity, we get

[2f is now the shadow price associated with (2')]

kl li + a?D, - (rl'- yzi\if *r: Q (22)

One important characteristic of Problem II is that

here, unlike in Problem I, we have at optimum

4:l' (16)

This puts us in a situation of having our programming

horizon as a definite zero point on the time axis such

that one dollar at that point is worth exactly one

dollar. In view of (16), we have

)b:l+Pi
and (9), (10), (11) and (12) can be verified to hold'

The major conceptual difference between the two

problems arises from the fact that in the latter con-

sumption is treated as a burden on the system, and

is not being solved for endogenously. The burden can

be forcefully demonstrated if we associate with (15)

the dual value ,li and note that

ii:4*,. (17)

It is interesting to

Ar! kf dcf *,

point out, that (17) imPlies

ArflAcf *, drf
(1 8)

Obviously, (18) is not the same as (13). Both, how-

ever, are necessary (though not sufficient ) conditions

for inter-temporal rquilibrium in consumption.

OBSERVABLE CONSUMPTION FUNCTIONS

Problem I, with utility function as the objective func-

tion, is not applicable (but see Baunol and Quandt,
1965). Problem II formulation, on the other hand, is

I

t

ri
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and
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(23)

The value of 1 + pf is the marginal rate of return
of a production activity. The ratio 

^f 
lU *, is the same

for all activities. Since the last term of the right hand
side of (23) will vary from one activity to another, it
is evident that the marginal rate of return of the dif-
ferent production activities will not be equal at the
optimum solution to the present problem. It is also
possible to show discrepancies between the internal
rates of return and the ratios of the shadow prices
for the other kinds of activities. They will, however,
not appear in investment activities, which do not
contribute to current income and have, therefore, no
consumption elements in their columns. The economic
reason for these flndings can easily be explained. In
our model consumption is imposed as an income tax.
By investing in real assets the programmed unit can
avoid the penalty of the tax. However, we are trying to
program an economy which regards consumption as
"good" not as "bad." Given that consumption con-
tributes to the welfare of the programed economy,
resources will be misallocated by the program.

The direction of this misallocation can also be
recognized from (23). z; is the value added in a produc_
tion activity in year r. The higher the ratio of value
added to initial pecuniary requirements (the ratio
z;lkf'), the larger this discrepancy of the marginal
contribution ofthe respective activity from the overall
marginal rate of return of the program. In other words,
the solution to Problem III will favor activities with
relatively low value added, thus avoiding consump-
tion.

Some comfort can, however, be derived from the
fact that business executives of large corportations
may still find the formulation of Problem III useful.
Assume that we are programming such an enterprise
and that c, is not consumption, but dividends paid
in year /, which the management promised stock
holders to pay as a funetion of income. If management
does not attach any value to these dividends, it will
tiy to follow the recommendations of a model such
as our Problem III.

ELMINATING MISALLOCATION

Problem III can be amended to eliminate its misal-
locative nature. Let Problem IV be: Maximize

rl,:\6,c,+a (24)

subject to (2'), (3), (4) and

- tz,x! - yp{${ + ypif? t c,aa,. (25)

Eq. (25) is the consumption function incorporated in
the linear programming formulation. The d, are arbi-
trary positive constants.

There will be no misallocation of resources if the
objective function coefficients in (25) are chosen in
such a way that in the solution to Problem IV

6,: )i*rfor every t. (26i)

We shall call a solution maintainin g (26) an unbiased
solution. It is our assumption that in the system we
program an unbiased solution exists. The assump-
tion is based on the expectation that in the real world
an unibased program exists. We shall later show that
such a solution can be found.

To see that misallocation has been eliminated, con-
sider the dual equations corresponding to the c,
columns of Problem IV. They are

)i : 6,. (27)

Equality will always be maintained, since c,>0 for
eyery ,. (This point is seen clearly from the simplex
tableau in the Appendix. The activities c, do not
require factors of production, but contribute to the
objective function.)

The dual equations of the production activities
will now contain an element from (25). Instead of (22)
we have

kf'),i + afu, - (r!' - 8z;l,i*t * yzli : g. (22,)

However, if d, : )"1*, one gets 2i : lf+ r. Introducing
this last equality into (22') will eliminate altogether
the misallocation term y(zilkl) that appeared in (23).

The economic interpretation is simple. In an un-
biased solution consumption dollars are given the
same weight in the objective function as dollars carried
over to next year's production and investment activi-
ties. Thus consumption is no longer a burden. The
equality of the translormation rates in production and
consumption can be shown here, as in (18). Also, the

)i
)f .,

r!'- (afu,l)!*) z;

kl ' kr'

z-:l+oP-^s'
I t n.Ki

--{
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remark we made at the end ol Section B, about the

maintenance of the condition for equilibrium, can be

repeated more emphatically with respect to Problem

IV.
We now show that an unbiased solution (whose

existence we assumed) is attainable. Our procedure

will simply be to program with alternative 6, values.

We shall presently claim that if we try enough, we

may find the set of 6, values that will maintain the

equality of (26). We do not suggest a practical or

efficient search method, we just want to show that
it is possible to reach an unbiased solution.
Proposition. An unbiased solution consistent with (26)

is attainable in a finite number of computational

operations.*
To prove the proposition, we start by showing that

the ,ti values are restricted to a bounded and identiJi-

able region. This is done by inserting (10) into (11)

(both equations apply in Problem IV too)

0?>- illA,*r> fr!.

For/:T(recall,vl:l)

fr+> 1\Z p+.

Since the )'ti are compounded interest rates (12),

boundedness is not surprising-the annual internal
rateQ are bounded between the lending and the bor-

Figure 1

An Unbiased Solution

rowing rate. Reference to financial operations was

made for convenience. Zerc will always be a lower
bound and an upper bound can be found by considering
the production or investment activity with the highest

returns to the dollar when all shadow prices of produc-
tion factors are zero.

It stems from the nature of linear programming
that there exists a set {e, : e > 0} such that the two
sets ofobjective function coefficients {6,} and {d, + e,}

will yield identical solutions to Problem IV. (Identical

solutions are here, of course, identical in the values

of the primal solution.) This feature assures that an

unbiased solution can be found.*x
Suppose that we partition arbitrarily the range that

d, can take and solve all alternative linear program-

ming problems with the different 6, values. Suppose

also that two such alternative programs yielded

identical primal solutions. In Figure 1, let 6,1 and 6l
be the alternative objective function coefficients, for
a year /, associated with the same primal solution. The

solution of the dual problem will now indicate whe-

ther or not an unbiased solution has been reached.

The graphs aa' and bb' represent the possible forms
of variation of Af*r-the coefficient of the dual
solution-occasioned by variations in d,. In the case

depicted by bb' 6, - Li*rchanges sign as we go from
6l to 6l which, as seen in Figure 1, is the criterion
for an unbiased solution. The reasoning for the case

of aa' is even simpler.
It is now clear that a Jinite partition of the range

that the values of the 6,'s can take, can be found, such

that if all combinations of these values are tried in
objective functions of alternative programs, an un-

biased solution will be attained. This proves the
proposition.

The unbiased solution need not be unique. Perhaps
in most cases the programmer will choose the solution
with the highest a.r-wealth at the horizon.

CONSUMPTION AS A FUNCTION OF WEALTH

AT THE HORIZON

We may leave it to the interested reader to detail the

formulation of Problem V-a programming model
with (20) as the consumption function. We will present

t

(28)

(2e)
t

* A solution consistent with (26) is any solution identical with the unbiased solution. The meaning of this will become clear shortly.
*+ Some dilficulties may be encountered in cases of degenerate solutions. The Proposition will still hold. The proof is, however, rather tedious

and will not be given here.

-b . u!t+I t+2

-f .uEt.t^t.2
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here only a series of remarks. (a) No misallocation
problem arises since consumption is affected by final
wealth only. (b) Equality of rates of transformation
in consumpiion and production is maintained here
too. (c) Wealth is taken here in the Friedman (1957)
sense, and includes reproduceable as well as non_rep_
roduceable assets of the economy. (d) No special
search procedures are required in this case. However,
this advantage is gained at the expense of difficulties
associated with the evaluation of wealth.

CONCLUDING REMARKS

We have tried to show in this paper that dynamic
capital programming models, consistent with econo_

OPTIMAL PATTERNS OF INVESTMENT, PRODUCTION AND CONSUMPTION 339

mic theory, can practically be applied. For business
analysis Problem II, with predetermined consumption
outlays, can be a useful framework. Several consump_
tion (or any other "leakage,') patterns may be tried,
and management will make the choice among the
alternative programs.

The incorporation of consumption as an endogenous
variable can be of crucial importance in the context of
development. It should, however, be noted that the
models discussed thus far are appropriate to the
analysis of regional development problems. When it
comes to national development, it is probably inap_
propriate to disregard demand functions for the com_
modities produced, as we did.

APPENDIX

SIMPLEX TABLEAU, PROBLEM IV.

Objectiue Function Dual 62d1

xl x', 0{ 0i cl xl x\ 0{ 0\ c2 xt x'3 o{ o"

Right
Hand
Side

Vector

1. Finance year 1

2. Real input year 1

3. Consumption year 1

4. Finance year 2
5. Real input year 2

6. Consumption year 2

7. Finance year 3

8. Real input year 3

9. Residual value

ki k', 1

a! a\
^, ^ft.\ - lyi

-h', -h{
- b'rz

*b\,
-r\

kikil
al a\

-lzz -^tpt
- hi -h[

-b\,
- r',

k\ 1 -1
a',

-,\ - Bt ltu:, 1

).\
l)r

il

A)

t2

/'2

A3

03

4

-l

^tp\ 1

hi -1

llt
Qr

dr

Hz-dt
4z
d2

ltt - dz

Qt

o

yp\ 1

ho, k3

a!

-rl

NOTES TO THE TABLE

1. The tableau assumes a simple example:
a. The programming period is three years;
b' In every year there is one activity of every kind-current production, real

investment, lending and borrowing.
c. There is one rear factor which is in rimited supply in the first year and is

reproducable by the real investment activity.
2. Unlike in the text, all lower case and Greek letters are scalars.
3. h! : ry - ^,r,

h!:1+(r-ipt
h! :1 + (r - y)p?

These are gross saving elements fsee (2,)].
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Papa 5-3

AN ECONOMIC ANALYSIS OF DRAINAGE
PROJECTS lN SINKING SOILS*

YOAV KISLEV and HANNA LIFSON
The llebrew Unioersity, Rehnoa, Israel

INTRODUCTION

Ao area of apprcximately 40,000 duaams (10'000 acres) of swamps aad a

lake in the oorthera part of the Jordan Basin ia upper Galilec was re-

claimed in the mid 1950's when the first stage of the Hula Draioage
project was completed. The area has since been under cultivation. However,

substantial parts of it suffer fron winter floods and additional drainage

projects are Dow being considered. The new project, now under plenning

and economic evaluation, is a complex system composed of several oulti-
stage subprojects. This paper develops the fram€work for the economic

analysis of one of ihese subprojects, namely, the drainage of the peat

soils area-
Peat soils form approximately one half of the draitred area- These soils

are very rich in organic materials-in some cases ovet 907oby volums-and
cultivation created conditions favorable to th€ir decompositioo- This

results in a gradual shking of the soils which progresses faster io some

parts of the valley than in others due to local conditions. The average rate

is estimated to be in the order of l0 cm per annum' This loss of topographic

elevation leads to aa increase in the area which is lower than the winter

t This work was carried out at the Center for furicukual Economic Research as

part of a project financed by the water corimission, the krael Ministry of Agricultwe-

ThaDks are due to D. Shoham, of the Tahal Co., for technical informatioo and co6t

estimates, to D. Yaroa and anonymous referees for valuable commeots and to I- Nun for

research assistatrce. Errors of omission and interpretation are ours.
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level of water in the main drainage caoals and is consequently subject to
flooding. The lower the area, the higher the probability of winter floods
and the damage to crops. It is expected that the sinking process will cootinue
for several decades, lowering the area by several meters.

The sinking process cao be controlled, to some extent, by special agri-
cultural methods but thcs€ are considered expensive in terms of foregone
income, and will probably not be used. Oo the other hand, the drainage
canals, cutting through the area" can be deepened to prevent water from
over0owing during the winter. This is the esseace of the flood control
projects now uoder consideration. Without going into technical details,
we make the simplifying assumption that the larger the itrvestmeat the
deeper tbe canals and the smaller the flood damages.

The peat areas have been surveyed and maps prepared showing the
available ioformation on the composition of soil material. The sinking
process can thus be forecast. We shall be able to estimate future floods
with the existing drainage system or any Dew ooe.

The economic problem that emerges is that of determining optimum
size and timing ef 16s drainage project. Since the sinking process is gradual
ard large projects have to be built in stages-for technical and financial
reasoos-we shall discuss not only the optimum size and timing of a single
project but also projects whose rate of construction is adapted to the rate
of sinkiog of the peat soils. Therefore, the model developed is an invest-
ment proc€ss whose puvpose is to mitigate worseaing economic conditions.
One can take as additional examples the rate of construction of highways
as a fuaction of everincreasing congestion costs, or investment in adver-
tising to remind the market of the existence of products which it otherwise
slowly forgets [5].

As the foregoing discussion indicates, the investment projects are
regarded as preveotive measures aod their contribution to the economy
is a rising functioa of the damage or loss they prevent. This connects our
analysis to Marglin's [3], who considered investment projects when
dsmand for their product is rising. At this stage, our aaalysis is, like his,
deterministic; which impties, for example, that we use expected values of the
flood damages, iDstead of their distributions, or assume complete know-
ledge of the investment projects and their effects. It will become clear
below that to some extent we also follow the model of capital accumulation
developed by Eisner and Strotz [2]. The theoretical part of the article is
general and applies to aoy case of capital accumulation with risiag marginal
product of capital. We prefer, however, to kecp the discussion specific
and to restrict it to the case of our particular flood control project. General-
ization should follow easily,

The following section presents notation aDd our assumptiotrs. Section 2
aoalyzes a single-stage drainage project, Section 3 deals with the m,^
stage posibility. A continuous investment process is introduced in
Section 4 and an application in Section 5.
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I Notations and Ass*rnptions

Derivatives are indicated by primes, time derivatives by dots.

t calendar time;

r rate of interest.
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The state

A

of the area is characteri zed by the following variables (see Fig. I ) :

maximum potential income from the area {in dollars). In &e
present study, this is assumed to be independer:t of time. The
assumption of a rising potential income can eaiily be incor-
porated [3].

deterioration of income due to sinking. Since deterir",ration is a
continuing process, we assume g > 0. Decompositica reduces
the peat soil area, uncovering mineral soil. The area t:rat sinks
is thus diminishing. We assume, therefore, that g S G.

actual inccrme if no flood-control measures are takr:"; . This
value can become negaiive but then, unless drainage i: im-
proved, the area should probably be abandoned.

c{t)

A's$)

The project is constructed gradually, invesrment adding to its size. Tn.:
florv of investment is, therefore, a measure of the rate of construction. The
size of the project is measured in terms of accumuiated investment. This
creates a difficulty since the cost of construction will usuaily depend on rhi
rate of investmeat. We shall distinguish between net and gross cost ([2],
p. 471). Only the firsi is added to the project and can serve as a measure of
its growth. This is the amount of "bricks" laid in the project, measured in
money term3. The gross cost depends in addition on the rate of construcrion.
This cost is the cost of laying the "bricks", including the value of the
"bricks" themselves. It should be emphasized that the distinction drawn is
artificial although the problem is real-very slow or very fast construction
will generally be more expensive than inyestment at some optimum pace.r

'The optimum rate of construction depends oo two compoocnts: (a) Thc sinking
rate-the demaad comporeot, aad O) the cost of investmeot as afunctiouof therateof
constructioo-the supply aspect.
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Thus let

lr(0 be the rate of construction (net cost) measured in dollars per
unit of time (a year, say).

Without loss of generality we assume that we start from a zera
size project, so that the size of the project at time I is

rv(0

60D is the gross cost of construction. As explained above, we assume
that@(*) > f,.

The income of the area is a function of time and of the size of the
project:

P(t, w) income in dollars fuer year).

In this work we assume (as did Marglin [3]) that the effect of the project
can be expressed by a function h(w), such that income is separable in the
form

P(t,w)-A-g(t)h(w,),

where

h(w) is the effective ffood control capacity of a project of size w and it is
assumed that

0 < i(w) S 1, i(0) : 1, h'(w) <,0, h"(w) > 0.

The assumptions on the signs of rhe first and second order derivatives of
A(w) are the usual production function assumptions. Engineers agree with
these too, although in practice one may encounter regions ofdecreasing costs
and it is not always easy to arrange subprojects in stages so that h',{w) > 0.
The effect of the function i(w) is illustrated graphically, for a special case,
in Fig. 1

we assume in the following that a flood-control project, once constructed,
will last foreover. As service life of projects of this kind, if properly main-
tained, is very long, this seems a reasonable assumption. Maintenance costs
are usually taken by engineers as a fixed percentage of investment outlays
and as such they may be inclirded in the construction costs and need not
be treated separately.

,: I $,G) dt.
0
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Special notation is adopted for the discrete multi-stage czrses:

r, date of construction of stage i(i : 1,2, "", n), 16 : 0,

wt size of project after the construction of stage i,
i

.r1 investment of stage i, so that o, : 
Er*r.

For simplicity, we assume a gloss cost function of ihe form x, + c (where

c is fixed cost per stage) for discrete cases.

2 A Single-Stage Proiect

Valuable insight is gained by starting the discussion with a single stage case.

A single stage project of size u, wili be constructed at time l, " l\'esent vaiue

of net income from the area is given by

tt a

.1,: i IA - g{,r)le-"'dt + ! i,t -c(r)n(wr)] e-"dt -(x' + c)e"-"tr (l)
0rr

Note that wt : xr.

y in (l) is to be maximized with respect to ,1 and to wl . since ,{ ie t:le

maximr:m annual income, y is bounded for positive r. The necessary ceii-

ditions for optimum timing and size are AyfAtr: Ayl7wr:0' Seccqr'

order conditions can be shown to hold.

y :0 - r(xr * c) : c(r1) [1 - h(*r)l. {2-;
Ltl

That is, investment will take piace when the (annual) interest cost will be

equal to the (annual) value of the damage prevented.

ov f .,,,,
ar, 

: o'- 
J 

s(r) h'{w') e-'t dt : -e-dr ' (3)

The integrand in (3) i, ,t 
" 

uoorrl value of the damage prevented by the

marginal dollar. The integral is thus the marginal value of the investment-

It equals, at the optimum, .$ 1 discounted from Ir.
3 lviltzbat u

32i



32& YoAv KIsIJv AND IIANNA LIFsoN

There still remains the question whether to build or not and for this pur-
pose it will be useful to define:

,t
D=JtA-c|)je-rtdt;

0

@

E=JlA-s?)le-ndt;
tt
6

r = I lA - s(t) h(wr)l e-,, dt;
,t

G = (.x. * c) e-,t,.

The economic rent of the project R is the varue of the damage prevented.

X:F * E-G: f {g(r)lr - h{wr}l-r(x, + c)}e-,,dt. (4)

Two cases can be airtinguirn.o. In one of them-perhaps the flooding of
residential areac-the project should be constructed rvhenever the rent. R,
is positive. This will hanpen if jn rhe soluiior. of {2) aad (3) 0 < rr ( lc.
since by {2) the integrand in (a) is zero foi r: ir &nd non-negatire rbr
t 7 tr, since g 0. However, in our case there exists the aliernarire o;
abandoning the area-. Here th* r:riterion fcr cossti:$ction shoultl heF- G > 0 inote that dmay benegariveJ" if , < ii. thE area *iil *ot i:e
cultii'ated uatii rhe con:pletion ci the projecr ar i1 .

construction may have ro srart immediateiy lperhaps ibr poiitical rea-
sons); ontimum siee is then d.eiermined by soi.;ing (3i for ir :0. Simiiariy
if the soiution of (2) and (3.1 yierds r, < o iio this case g{r) shcuid be def;aed
f*r negative values of ,), esnstructicn should be immediate anci ci: the same
size as if /, : 0 was forced..

3 Mr-rlti-Stage Frojects

If division is possible, construction in stages may increase the efhciency of
the systena. Net income from an r,-stage project is

,-l tr+r
, : I I te - gQ] h(w,)l e-,t dt +

i:0 ll
n

- I (r,+ c) e-n'-
n-l

T u - g(t) h(w^)] e-'t dt
la

(5)
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For convenience we define here po : 0.

Remember, wt * ,fr*t : xl (i : l, ..., n), td[): l, fo : 0.

Again,

ev

=1- 
:0 --+ g(t,) lh(wr-r) - h(w,)}= r(xr + c) (i : 1, Z, .-.,n). (Oclt

(Since 16 : 0, this variable cannot be included among the pa.rameters of
maximization.)

329

(i : l, 2, ...,n .* |J.

(7ai

iTbi

,l+ 1^^CYI
.- : 0 * i S(r) h'(w)e-'t dt : e-tr+t - e-d,cw, i

ii
s

oy j

-:-:- : g - | g(r) h'(.w^) e-,t dt : *e-,t..
I
I

/a

The system 16l and i7) is a ;et r-'isimultaneous equariilas. In practice ,:ne
m3)' encounter ca-Ees rlirich will ruake theu ""step-rr.-ise" solution possible.
Scrne exar:ples niii ijlustraie this point.

a.) Assume thar rhe size ci th* staqes is pre,cet*l'r::ja':d irhis ;liil be the situ-
etion in the application illustrated belowi. The i: opt:;-n,-r* riajng is deter-
nined b"v {6), rlarting from r, . Etuarr'orl {6) may be r=,-rirlen in rhe m*re
general forre

P(t , , x-,) -* Pt.t, , w; t) : ri-.yi * f,), {6"1

wbi;h emphasi:e': rhat a srage r,rrii he added tc the pre;jee: when the addi-
tic:laj ;ncor::e due to the pre.,,e;:itioc of damage is eq;riai l,r the inieresr rcst
ol the capital inr.'ested ai ihis stage.

'b) Ic another case, the sequence {t,} may be predetermi*ed, perhaps ir the
forrn l, : ,, or by an,v other pailem. Then the set (6) is voirtr aod (T can be
soived equation after equation, fr.cm w1 to lr,.

'quations (6) and (7) show thal rhe opiimum size of the project at point f,
depends, in general, on the planning horizon. It is instructive to note that
when either {w,i or {1,} is predetermined, the optimum size or timing of
investment is independent of the planning horizon.*

* This cooclusion holds only for linear cost functions aud not for &e geaeral fuoc-
tioa p(*).

3.
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An intuitive explanation for this is connected to the fact that a project
of size w, contributes by preventing damage during period (tt, t*r) and also
"delivers" a project of size wt at tt+r.

c) Aaother interesting case might be the one in which only the date of com-
pletion of the project, ro, is predetermined. Then one can go ,.backwards,,
from lr, fust determining wo then wo_, , tn_1, etc. This method of solution as
well as the previous ones can be interpreted as a dynamic programming
algorithm []. The recurrence relation for the present case (c) is

,t+ r

f(t,, w) : max { I te - g(r) h(w,)l e-,t dt
,Lva t t

- (x, + c) s-rtt * .f(tr*r, )einr)),
(8)

where -1i .',, w,) is the maximum present value of income if the multi-stage
project starts at ,r, and is constructed in n - i stages.

Dynamic programming can be applied to the numerical solution of the
system (6) and (7) even if these equations must be solved simultaneously and
not step-wise in the sense of points (a)-(c) above.

If the date of the final stage is predetermined, the number of stages is
dictated by the solution- If, on the other hand, n is given exogeneously, one
could search for the corresponding t,.

consider the simplest of the multi-stage projects-the two-stage case. The
single-stage project of section 2 can be obtained as the limit of the two-stage
project 8S /2 --r co. Thus, if the solution to the maximization of income from
the two-stage project yields r, < co, income from this project wiil be larger
than income from the single-stage case. This can be generalized to the
multi-stage case.

we may consider a multi-stage process with an infinite number of stages.
Then (6) and (7), expressing the necessary conditions for optimal invest-
ment, will form infinite sets of equations.

4 ContinuousConstruction

within the context of flood control projects, a continuous construction
model is perhaps only of theoreticar interest. However, it will be an appro-
ximate description of a multi-stage discrete model with small intervals
between the stages. The solution of the continuous investment case is concise
and one may wish to carcurate it to gain more insight into the solution of
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discrete models. In other cases (consider advertising) it may be a closer

description of realiry then the discrete model.
In the continuous case, we do not speak offixed costs, c, as in the discrete

case, but permit outlays associated with construction to be larger thail net

investment and depend on the rate ,rf investment" Thus $(d,) > f . We

start, however, with the case dpi,) : f' and mention the more generai, and

complicated, case iater.
Present value of net income, if d(*) : rv, is

- CO h{w) - w(t)) e-'t dt.

Maximizing y in (9), we use the calculus of variation ([1], p. 40). Let ff
stand for the integrand in (9), then by the Euler-Lagrange equation

AH d6H_ __ _ 0.dt 0w

we obtain

331

(ei
€y:ilA
0

CW

-rA'{rr) : 
-s(,)

i 10)

(11)

The end point condition reduces in this case to

l*'-" : o'

which is automaticaliy satisfied.

From (I0!--since i'(w) is a monotonic functioeone can deduce the rate

of investment d,(r), once the explicir forms of the functions g(t) and h(w) arc
given. Equation (10) thus indicates the optimum path of the project's future
history.

Some further observations are noted below:

a) Condition (10) can also be obtained from (6)-the first order condition
for optimum timing in the discrete cas+-which can be rewritten as (re-
memberthatc:0)

wl-t - lat

Taking the limit of (11) BS w1-1 + l?r, \tre get (10). For a similar approach
in the context of dynamic programming see ([4], p. 231).
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b) The optimum initial size of the project, los at t6 : 0, is given by (10)
and it is such that

h'(wo\ - - +" \ v/ g(ro) '

Thus, the process will start with an initial investment of ws and then con-
tinue in the path dictated by (10).*t

c) It is important to remember that we found in this and other secrions
the conditions for maximum net income sp mini6sfl1 losses. Denoting by y*
the value of the integral in (9) when investment follows the optimum path
dictated by (10), the project will be economically justified only if
y+-ws20.

Note also that the element of the construction cost in (9) is
@@

I *r-" dt : -wo + J (rw) e-fr dt.
00

The right hand side of (12), obtained by integation by parts, is the dif-
ference between the service cost of capital invested in the project and the
initial investment, w6.

d) Differentiating (10) with respect to time one gets

w: (1 3)
lg(t)12 h"(w)

By assumption g ) 0, h"(w) > 0. So long as h"(w) < co and f > 0 we
have * > 0. That is, construction will proceed continuously. However; it
will stop when g : g.

The result, stating that ri, 2 0, is welcome, since the project cannot be
scrapped at a price, disinvestment-that is il, < 0, is meaningless.

e) In general, income from the area will not be constant. Diff"erentiating
A - eQ) i(w) with respect to time, assuming (10), we obtain the rate of
change of income along the optimum path

dlA - g(t)h(w)l : rw - th(r). (14)
dt

It is not clear what the sign of (14) is.

' Note that initial adjustment is here instantaneous. This is due to the assumption
of 0(*) : rl (compare with Eisner and Strotz [2D.

t Remember that we do not assume that a project of any size exists beforehand.
This point can easily be modified.

(12)

r!
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f) Part of the foregoing discussion indicates that this is a somewhat

degenerate case. Due to the linearity of the cost function in (9), the deri-

vative ri, does not appear in (10), and there is only one optimum path of
investment (see also point (6) in Section 3).

In the more general case, where @(*) is not a linear function of *, the
present value of the income is

o
y : I tA - cQ) h{w) - S(w)le-n dt.

0

The necessary condition for optimum path is

-O"Oi) ii + rQ'(w) + c(r) h'(w) : $,

I'ith the end condition

limd'(li,) e-n :0.

Further investigation of Eq. (16) has been deferred to a later work.

5 An Erample

The example presented in this section is based on preliminary date from
the Hula project and on some arbitrary assumptions. The analysis sho*ld
not be taken as a recommendation of any sort.

The pianned flood control project is divided into five stages (see Table ii.
The first stage, if constructed, will reduce the expected flooded area ;n
1969 from 4,999 dr to 1,589 dn. Cost of construction is* IL 1,540,000 or
lL 452 per dunary. Stage 2, if carried out in 1969, will reduce the expected

flooded area by 883 dn in that year, at a cost of IL 2,264 per dunam. The
marginal cost increases from stage to stage. This is consistent with our
assumption of h"(w) > A.

We assume a rate of interest of 10'l (81 capital cost and Zfl milnte-
nance). At this rate, the present value of a dunam of land "saved" from
the floods (in terms of expected value) is IL 1,282" Thus, according to the
Iast column of Table 1, only stage I should be constructed in 1969.

Information similar to that given in Table I was projected for the period
1969-2000 from technical data- Thus we could estimate future values of the

I IL 3.5 : $ 1; I dn : 0.25 acres.

(l s)

(16)

(17)
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TABLE T PROJECT DESCRIPTION (1969)

Stage ldenti- Cost of Cost of Expected Change in lv{arginal
ficatioo in Project (rr) Stage (xr) Value of Area Flooded Cost

Hula Project (IL'000) (IL'000) Flooded Area (tu) (Ilidn)
(dn)

Stage

0
I

2

3

4
5

Pres€nt state
59.I5
58.65

58.65 - 0.5

58.65 - 0.5+
s8.65 - 0.5++

I,540
3,539

4,963
7,ggg

II,IlO

1,540
1,999

1,424
? qrs
2 111

4,999
1,589

706

570

363

303

3,410 452
883 2,2&
136 10,471

247 14,130

60 53,700

Notes:

Costs are based on 1969 data;
Project's effect, in terms of area flooded, is for 1969;

I dunao: 0.25 acres;

Fixed costs c: 0.

$l:IL3.50.

functions g(t) and g(t) h(w). At this point, Eq. (6) was utilized to calculate
optimum ,, values. This analysis is carried out in Table 2. Potential income
from the project area is IL 6,691,000 per annum. If the project is not carried
out, the damage in 1969 will be IL 640,000. Construction of stage I in 1969

will contribute IL 437,000 of damage prevenrion at an interest cost of
IL 154,000. It should therefore be constructed immediately.

Stage 2 is to be constructed in 1977. This is the fust year in which the

annual value of the damage prevented by stage 2 will be higber than the

interest cost on the investment at this stage. Stage 3 will be constructed in
1987. The calculations were followed up to the year 2000, showing that
stage 4 will not be constructed in this period. The resulting income flows
were plotted in Fig. 1.

5 Concluding Remarks

This paper has presented a theoretical framework for the analysis of flood-
control projects in the Hula peat soils, and, we trust, for some other cases

as well. It serves as a starting point for further research and as a guide to the

empirical work which is now in progress.
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TABLE 2 : CONSTRUCIION PROCESS (Ili TI{OUSANDS OF ISRAELI POUNDS)

Year (t) 1959 791 r' 1987 2000

Present state-no construct 0n

Net income IA - e?)l
Damage fu(t)l

Stage I
Net income H - s(r) n(lrr)l
Damage [g(t)](wr)l
Damage preveated if stage constructed

Interest cost (rirl)

Stage 2

Net income lA - stt) h(w)l
Damage [e€l h(ta,)l
Damage prevented if stage constructed

IDterest cost (rx2)

Stage 3

Net income lA - gt,t) h(w)l
Damage fu(i) lti4J)
Damage prerented if stage constructed

Interest cost (rx3)

Stage 4
Net income lA - Stt) h(w.)l
Damage lg{t1h(w")l
Damage prevented if stage constructed

Itrterest cost (rx4)

Optimum size of Project (w,)

6,051 s,557

&o 1,134

6,488 6,301

203 390

45 I

154

6,500
l9l
199

200

4,852 4,129
1.839 2.561

5.;58
:a l

r,540 3,539

6,109 5,075

5 32 i ,616
t4l
rj'

5 tl:ii

1,6, :
,1

:9i
1.963 .1,963

Notes:

Potential income I A : LL. 5,691 ,000;
Damage prevented: P(tt, wi - P{t,, wr-r) : g(t,) lh(w;) - /r(w,)l;

Column headings show construclion dates, except for 2000;

A rate of interest r : 0.10 is assumed.

Further work in this study will be in three directions: a) The integration
of the analysis of the peat soils project with the analysis of tle rest of the

Hula Basin drainage system; b) The incorporation of elements of uncer-

tainty and accumulated information in the analysis; c) Extension of the

analysis of Section 4 to a rnore general cost function.
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lLxlos
7000

A-q(f )h(w)

'A-s(l)

1977 1987 20oo r

Fig. t. Future iacome flows ia project area
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