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Abstract

Exploitation diminishes the capacity of renewable resources to with-
stand environmental stress, increasing their vulnerability to extreme
conditions that may trigger abrupt changes. The onset of such events
depends on the coincidence of extreme environmental conditions (en-
vironmental threat) and the resource state (determining its resilience).
When the former is uncertain and the latter evolves stochastically, the
uncertainty regarding the event occurrence is the result of the com-
bined effect of these two uncertain components. The environmental
threat renders the single-period discount factor policy-dependent and,
as a result, the compound discount factor becomes history-dependent.
We study optimal management in such a setting. Existence of an op-
timal Markovian-Deterministic stationary policy is established and the
optimal state process is shown to converge to a steady state distribution.
A numerical example illustrates these properties.
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1 Introduction

We study management of renewable resources with stochastic state evo-

lution and environmental uncertainty regarding the occurrence of an abrupt

catastrophic event. The effects on management policies of these two un-

certain processes are highly intertwined, as the vulnerability of a resource to

(uncertain) environmental stress depends critically on its (stochastic) state.

Admittedly, numerous uncertain elements prevail in any given resource situa-

tion and the literature addresses many of them (see Pindyck 2007). But the

combined effect of stochastic state evolution and uncertain abrupt change (or

regime shift) has not been thoroughly addressed so far.

The economic literature on natural resources with stochastic state dynam-

ics mostly ignores uncertain catastrophic events such as abrupt regime shift or

ecological collapse (see Burt 1964, Reed 1974, 1979, Pindyck 1984, Knapp and

Olson 1995, Pindyck 2002, Costello et al. 2001, Sethi et al. 2005, Singh et al.

2006, Mitra and Roy 2006, Wirl 2007, McGough et al. 2009, and references

they cite). Some works incorporate deterministic thresholds, e.g., project in-

vestment thresholds (Pindyck 2002), extinction thresholds (Mitra and Roy

2006) and temperature thresholds (Wirl 2007), so the uncertainty emanates

only from the stochastic stock dynamics. Other works allow for uncertain

regime shift, such as extinction of a fishery population (Roughgarden and

Smith 1996, Sethi et al. 2005, McGough et al. 2009)1, but fall short of mod-

eling it as a regime shift in which the extinction occurrence changes the rules

of the game, since both the fishery stock and growth rate are known with cer-

tainty to equal zero from the extinction date onward. When the regime shift

1The uncertainty in the extinction thresholds stems from the inaccurate stock measure-
ment, introduced by Clark and Kirkwood (1986).
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is properly modeled, it turns the discount factor endogenous and this feature is

consequential for the optimal policy and the ensuing steady state distribution.

The sudden occurrence of catastrophic events (regime shifts, abrupt changes)

in renewable resource situations is related to nonlinear phenomena such as pos-

itive feedbacks, hysteresis and the presence of uncertain thresholds that are

prevalent in environmental processes (Dasgupta and Mäler 2003, Brock and

Starrett 2003). Examples include pollution-induced catastrophes (Cropper

1976, Clarke and Reed 1994, Aronsson et al. 1998, Tsur and Zemel 1998), a

sudden collapse of an ecosystem or of animal and plant populations (Clark

and Kirkwood 1986, Reed 1989, Tsur and Zemel 1994, Brock and Xepapadeas

2003), destruction of coastal aquifers due to seawater intrusion (Tsur and

Zemel 1995, 2004), phosphorus loading into lakes inducing an irreversible tran-

sition from an oligotrophic (clear) state to a eutrophic (turbid) state (Harper

1992, Carpenter et al. 1999, Mäler 2000), and global-warming induced catastro-

phes (Tsur and Zemel 1996, 2009, Broecker 1997, Mastrandrea and Schneider

2001, Alley et al. 2003, Nævdal 2006, Haurie and Moresino 2006, Roe and

Baker 2007, Stern 2007, Bahn et al. 2008, Weitzman 2009).2 This literature

strain assumes a deterministic evolution of the resource state.

The most pronounced effect on resource management policies of the pres-

ence of a catastrophic threat shows up in the discount factor, which becomes

policy- and history-dependent. Implications of this property for climate poli-

cies under threats of global warming induced catastrophes have recently been

studied by Tsur and Zemel (2008, 2009) in a deterministic resource evolu-

2The abrupt change may be desirable, as in Bahn et al. (2008) who consider two such
events: the resolution of uncertainty regarding climate sensitivity and technological break-
through regarding a carbon-free energy source.
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tion framework.3 Here we consider stochastic state dynamics in a general

renewable resource situation. The endogeneity of the discount factor requires

extending properties of Markov decision processes (MDPs), known to hold

under constant discounting (see, e.g., Puterman 2005), to the present case.

In particular, we establish the existence of an optimal stationary Markovian-

deterministic policy and show that the optimal state process converges in the

long-run to a well specified steady-state distribution. The first result im-

plies that the search for optimal policy rules can be confined to the (relatively

simple) set of stationary Markovian-deterministic policies. The steady-state

distribution of the optimal stock process provides a useful reference according

to which simple (even if suboptimal) management policies can be designed to

avoid or reduce catastrophic threats.

The resource setup, with the stochastic state dynamics and the environ-

mental threat, is formulated in Section 2. Section 3 formulates the resource

management problem. Existence of an optimal, Markovian-deterministic, sta-

tionary policy (under the history-dependent discount factor) is established in

Section 4. Asymptotic (long-run) behavior of the optimal state process is

characterized in Section 5. A numerical illustration is presented in Section 6.

Section 7 concludes and the appendixes contain technical details.

2 Resource setup

We consider discrete time, state and action spaces. The discrete time

formulation reflects the cyclical (seasonal, annual) nature common to most

3There is a parallel line of macroeconomics literature, stemming from Yaari’s Yaari (1965)
uncertain lifetime model and its perpetual-youth-model extension (see Acemoglu 2009, p.
345 for a discrete time version), in which the discount factor is affected by an event occur-
rence hazard (i.e., death). The event hazard in this literature, however, is exogenous.
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renewable resources. The assumption of discrete state and action spaces (finite

or countable) is an abstraction, which can be viewed as an approximation of the

continuous case. Practically, there are pros and cons to both approaches. On

a more philosophical level, a model, by definition, is a simplification (of what it

intends to model) and should be judged on the basis of its capacity to enhance

our understanding of the phenomenon under study. In the present case, the

consideration of discrete state and action spaces simplifies the exposition and

allows for a sharper results.

2.1 States, actions and recharge

The state of the resource system at the beginning of period t is denoted

St = (S1
t , S

2
t , ..., S

M
t )′, where Sm

t is the m’th stock, m = 1, 2, ...,M . The

resource evolves in time according to

St+1 = St +R(St) +Xt − gt, t = 1, 2, . . . , (2.1)

where R(St) = (R1(St), R
2(St), ..., R

M(St))
′, Xt = (X1

t , X
2
t , ..., X

M
t )′ and gt =

(g1t , g
2
t , ..., g

M
t )′ are M -dimensional vectors representing deterministic recharge,

stochastic recharge and exploitation (harvest, extraction) rates, respectively.4

The initial time period is t = 1 and the initial state vector, S1, is given. In

each time period t = 1, 2, ..., the resource state St is observed. Based on St, the

action gt is chosen, the deterministic recharge (growth) R(St) is determined

and the stochastic recharge Xt is realized, giving rise to St+1, according to

(2.1).

4The stochastic recharge (Xt) in the state evolution equation (2.1) enters additively.
Using the multiplicative specification commonly used in many fishery models (see, e.g.,
Reed 1979, Roughgarden and Smith 1996, Sethi et al. 2005, McGough et al. 2009) changes
the formulation of the transition probabilities below, but otherwise has no effect on the
general structure.
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The discrete (finite or countable) state, recharge and action spaces are

denoted S, X and A, respectively. Thus, S = {s1, s2, ..., sns}, where sj ∈

IRM , j = 1, 2, ..., ns and ns (possibly infinite) is the number of states. With

Xm(s) representing the support of stock m’s recharge distribution at state

s ∈ S and X (s) = X 1(s) × X 2(s) × · · · × Xm(s), the admissible recharge

support is X =
∪

s∈S X (s) = {x1, x2, ..., xnx}, containing nx (possibly infinite)

feasible recharge vectors xj ∈ IRM
+ . The recharge probability at time t, given

St = s, is denoted px|s(·), i.e.,

px|s(x) ≡ Pr{R(St) +Xt = x|St = s}. (2.2)

In a similar manner we let Am(s) consist of stock m’s actions (exploitation

rates) feasible at state s ∈ S and let A(s) = A1(s) × A2(s) × · · · × AM(s).

The admissible action space is A =
∪

s∈S A(s) = {a1, a2, ..., ana}, where aj ∈

IRM and na is the number of actions (finite or countable). An action gt =

(g1t , g
2
t , ..., g

M
t )′ corresponds to exploiting (harvesting, extracting) source m at

the rate gmt , m = 1, 2, ...,M, during time period t. The information available

when period t’s action is chosen is Ht = {S1, g1, ..., St−1, gt−1, St}. The action

is feasible if gt ∈ A(St).

2.2 Environmental threat

The resource system is under risk of an abrupt shock (regime shift) with

undesirable consequences. The conditions that trigger such events depend on

the resource state and exploitation policy and are uncertain due to genuine

environmental uncertainty. There is a subtle distinction between environ-

mental threat in the form of a catastrophic event whose occurrence depends

on genuine environmental uncertainty, and that associated with crossing an
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unknown threshold (Tsur and Zemel 2004, discuss these two types of envi-

ronemntal threat in the context of groundwater management with determin-

istic recharge). The uncertainty in the latter case is mostly due to our own

ignorance of the triggering threshold and there is plenty of room to learn from

experience (as we ”test the waters” and find that the world did not come to an

end we gain new information about the threshold). Here we consider the for-

mer case and the stochastic nature of the environmental threat is represented

by the survival function λ.5

We denote by κ the catastrophic state of the resource system and let 1−

λ(s, a) be the hazard probability to end up in κ at time t+1 when occupying

state s ̸= κ and employing action a at time t. Let T denote the time period

at which the event occurs. Then,

Pr{T = τ} = [1− λ(Sτ , gτ )]
τ−1∏
j=1

λ(Sj, gj), τ = 1, 2..., (2.3)

where we use the convention that
∏τ−1

j=1 λ(Sj, gj) = 1 for τ = 1. The event

occurrence probability (2.3) represents the environmental uncertainty condi-

tional on the resource state trajectory and exploitation policy. The combined

effect of the event uncertainty and the stochastic evolution of the resource

state shows up in the resource transition probabilities, specified next.

2.3 Transition probabilities

Let p(j|i, a) represent the probability of occupying state sj at time t + 1

conditional on St = si, gt = a and T > t (i.e., that the event will not interrupt):

p(j|i, a) = Pr{St+1 = sj|St = si, gt = a, T > t}.
5An interesting future extension would be to consider a Knightian uncertainty, e.g., by

assuming that the event occurrence hazard is known up to a (subjective) probability and
specifying an updating learning process as new information comes along (see Epstein and
Schneider 2007, Vardas and Xepapadeas 2010, for a possible approach).
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In view of (2.1)-(2.2),

p(j|i, a) = px|si(sj − si + a). (2.4)

We let Pa represent the ns × ns matrix with p(j|i, a) as the (i, j) element.

Given that the event has not occurred by time t−1, the probability during

time t of moving from si to sj and of nonoccurrence is

q(j|i, a) ≡ Pr{St+1 = sj, T > t|St = si, gt = a}

= Pr{St+1 = sj|St = si, gt = a, T > t}Pr{T > t|T > t− 1, St = si, gt = a}

= p(j|i, a)λ(si, a). (2.5)

We denote by Qa the ns × ns matrix with the (i, j) element given by q(j|i, a).

3 Management policies and welfare

We begin by formulating rewards (single-period) and payoffs. The decision

rules and policies are explained next and subsection 3.3 presents the welfare

criterion.

3.1 Rewards and payoffs

If the event does not occur during time period t, while the resource is at

state St and the action gt is undertaken, period t’s reward b̃(St, gt) is obtained,

whereas if the event occurs the post-event value vp(St) is acquired. The

latter represents the present-value, under the optimal post-event policy, of the

benefit flow from the occurrence time onwards, discounted to the beginning of

the occurrence period. We assume that b̃(s, a) and vp(s) are bounded and that

the latter is smaller than the pre-event value (defined below), as we consider

undesirable events.
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With β ∈ [0, 1) representing the (constant) discount factor, the (uncertain)

payoff is
T−1∑
t=1

b̃(St, gt)β
t−1 + vp(ST )β

T−1. (3.1)

Noting (2.3), the expected payoff (with respect to the event occurrence time

T ) is

∞∑
τ=1

(
τ−1∑
t=1

b̃(St, gt)β
t−1 + vp(Sτ )β

τ−1

)
[1− λ(Sτ , gτ )]

τ−1∏
j=1

λ(Sj, gj) =

∞∑
τ=1

τ−1∑
t=1

b̃(St, gt)β
t−1[1− λ(Sτ , gτ )]

τ−1∏
j=1

λ(Sj, gj) +

∞∑
τ=1

vp(Sτ )β
τ−1[1− λ(Sτ , gτ )]

τ−1∏
j=1

λ(Sj, gj). (3.2)

By changing the order of summation (permitted when b̃ is bounded), the first

term on the right-hand side above is expressed as

∞∑
t=1

b̃(St, gt)β
t−1

∞∑
τ=t

(
[1− λ(Sτ , gτ )]

τ−1∏
j=1

λ(Sj, gj)

)
. (3.3)

The inner sum above equals

∞∑
τ=t

(
τ−1∏
j=1

λ(Sj, gj)−
τ∏

j=1

λ(Sj, gj)

)
=

t−1∏
j=1

λ(Sj, gj),

which upon substituting back in (3.3) gives

∞∑
t=1

(
b̃(St, gt)

t−1∏
j=1

βλ(Sj, gj)

)
. (3.4)

This expression is the present value of the benefit flow b̃(St, gt) discounted with

the history-dependent discount factor

γ(t) =

{
1 t = 1∏t−1

j=1 βλ(Sj, gj) t = 2, 3, ....
, (3.5)

corresponding to the running (single period) discount factor βλ(St, gt).
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The second term on the right-hand side of (3.2) is expressed as

∞∑
t=1

vp(St)[1− λ(St, gt)]γ(t). (3.6)

Combining (3.4) and (3.6), the expectation of the payoff with respect to event

occurrence time T is give by

∞∑
t=1

b(St, gt)γ(t), (3.7)

where

b(St, gt) ≡ b̃(St, gt) + vp(St)[1− λ(St, gt)]. (3.8)

The catastrophic environmental threat affects the payoff in two ways: First,

it changes period t’s benefit from b̃(St, gt) to b(St, gt). Second, it changes the

running (single period) discount factor from the constant β to the state-and-

action-dependent discount factor βλ(St, gt). The latter effect is twofold: first,

it decreases the discount factor (βλ(s, a) ≤ β since λ(s, a) ≤ 1), thereby in-

ducing less conservation (since the future is discounted more heavily); second,

it turns the discount factor endogenous to the exploitation policy. The pol-

icy implications of these effects were studied by Tsur and Zemel Tsur and

Zemel (2008, 2009) in a deterministic state evolution model of climate-change

induced catastrophes. Here they are studied in the context of a stochastic

state evolution.

3.2 Decision rules and policies

A decision rule dt(·) determines the action at time t given the available

information {St, St−1, St−2...}, {gt−1, gt−2, ...}. It may be history-dependent or

Markovian (depends only on the current state St), randomized or determinis-

tic. Consequently, the four types of decision rules are history-dependent and
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randomized (HR), history-dependent and deterministic (HD), Markovian and

randomized (MR), Markovian and deterministic (MD). A policy (or plan)

specifies the decision rules for all time periods, π = {d1, d2, ...}, and is clas-

sified as HR, HD, MR or MD depending on the type of the decision rules

dt, t = 1, 2, .... A policy is stationary if the same decision rule is repeated in

all time periods, i.e., dt(·) = φ(·) for all t = 1, 2.... (Thus, a stationary policy

is necessarily Markovian.)

The HR class of policies is the widest and contains all other classes as

special cases, while the MD class is contained in all other classes. Within the

MD class, stationary policies are the simplest, hence the most attractive for

actual implementations.

3.3 Welfare

Under a Markovian policy π = {d1, d2, ...}, with gt = dt(St), the (random)

payoff, noting (3.7), is
∞∑
t=1

b(St, d(St))γ(t)

and the expected payoff given the initial state S1 = s is

vπ(s) = Eπ

{
∞∑
t=1

b(St, dt(St))γ(t)

}
. (3.9)

The welfare (value) function is defined as

v∗(s) = sup
π∈ΠHR

vπ(s), s ∈ S. (3.10)

4 Optimal policy

The optimal policy π∗, when exists, satisfies vπ
∗
(s) = v∗(s) for all s ∈ S.

We denote by vφ(s) the value corresponding to the stationary policy π =
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(φ, φ, · · · ). As Markovian-Deterministic (MD) stationary policies are attrac-

tive for practical purposes, it is of interest to know if an optimal MD stationary

policy exists, i.e., if the value v∗ can be attained by an MD stationary policy.

For standard Markov Decision Processes (MDPs), with a constant discount

factor, the answer is in the affirmative (see, e.g., Puterman 2005, Chapter 6).

Here, however, the environmental threat (catastrophic event, regime shift)

turns the running (one period) discount factor βλ(si, ai) policy-dependent,

implying that the compound discount factor γ(t) is history-dependent (cf.

equation (3.5)) and undermining the validity of this result (an example in

which there is a history-dependent discount factor and where there exists no

optimal MD stationary policy is presented in Appendix D).

Nonetheless, we verify that in the present case an optimal MD stationary

policy does exist and specify (in Section 5) the steady state distribution to

which the optimal state process converges in the long run. It turns out that

the history-dependent discount factor in the present case is of a specific form

that allows to specify the unconditional transition matrix Qa (defined in (2.5))

and, in turn, replicate the analysis of the standard, constant discount factor

case. For a general history-dependent discount factor we cannot perform this

reduction, and the example (Appendix D) exhibits a situation where this result

is false.

The existence property is stated in the theorem below. An extended

version of the theorem is proven in Appendix A.

Theorem 4.1. Suppose (A1) 0 ≤ β < 1, (A2) S is discrete (finite or countable),

(A3) b̃ : S × A 7→ IR and vp : S 7→ IR are bounded and (A4) b̃(si, a) and

λ(si, a)p(j|i, a) are continuous in a, and A(si) is compact for all si, sj ∈ S.
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Then, there exists an optimal, Markovian-Deterministic stationary policy φ∗,

i.e., the policy (φ∗, φ∗, ...) satisfies

vφ
∗
(s) = v∗(s) ∀s ∈ S. (4.1)

The Theorem allows confining attention to Markovian-Deterministic sta-

tionary policies, for which a variety of algorithms exists (see Judd 1998, Put-

erman 2005). In the numerical example of Section 6 we calculate the optimal

policy using an algorithm based on Linear Programming (see Puterman 2005,

Chapter 6.9), adopted to the present case of a policy-dependent discount fac-

tor.

5 Long-run behavior

In this section we verify that the optimal state process converges in the

long-run to a steady-state distribution and characterize this distribution. We

also specify the event-occurrence probability for each initial state. To simplify

the exposition we confine attention to the finite state case.

Recalling equations (2.4)-(2.5), Pφ∗(i, j) = p(j|i, φ∗(si)) gives the prob-

ability that the resource system moves from St = si to St+1 = sj when

the optimal policy gt = φ∗(si) is employed, conditional on the event not

occurring during period t. The unconditional transition probabilities are

Qφ∗(i, j) = λ∗
iPφ∗(i, j), where

λ∗
i ≡ λ(si, φ

∗(si)), i = 1, 2, ..., ns, (5.1)

is the survival (nonoccurrence) probability under the optimal policy.

The transition matrix Pφ∗ classifies each state in S as either recurrent or

transient.6 We denote by E0 the subset containing the n0 transient states.

6We assume that Pφ∗ is aperiodic, which is the common case.
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The recurrent states can be arranged inK irreducible subsets Ek, each contain-

ing nk states, k = 1, 2, ..., K.7 Recurrent, irreducible subsets are absorbing,

i.e., once the state process enters Ek it stays there forever. We denote by

Pk the nk × nk submatrix of Pφ∗ corresponding to the states contained in

Ek, k = 0, 1, ..., K.

It is convenient at this point to rearrange the states such that the transient

states are the first n0 states, the states in E1 constitute the next n1 states and

so on. Thus, S =
∪K

k=0 Ek and S
∪
{κ} is the state space containing also the

(recurrent, absorbing) occurrence state κ.

A state si ∈ S is called “safe” or “unsafe” depending on whether λ∗
i = 1

or λ∗
i < 1, respectively. The subset

S1 = {si ∈ S|λ∗
i = 1} (5.2)

contains all “safe” states. (S1 may well be empty.)

If a recurrent subset Ek contains no “unsafe” states, i.e., Ek ⊆ S1, then

entering Ek ensures that the event will never occur. This is so because the

probability that the event will occur during period t given St = si ∈ Ek is

1 − λ∗
i = 0 for any si ∈ Ek and Ek is absorbing. For recurrent, irreducible

sets containing only “safe” states we define the limiting matrix8

P̂k = lim
τ→∞

P τ
k . (5.3)

The (i, j) element of P̂k represents the probability that in the long run the

system will occupy state sj when it starts at state si and the optimal policy is

employed for any sj ∈ Ek. Clearly, P̂k satisfies P̂kPk = P̂k (taking one extra

7The subset Ek ⊂ S is closed if Pr{St+τ = sj |St = si, φ
∗(·)} = 0 for any si ∈ Ek and

sj /∈ Ek, τ = 1, 2, .... The subset Ek is irreducible if no proper subset of it is closed.
8The limit exists since Pk is aperiodic.
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step cannot change the limiting behavior), implying that P̂k has identical rows

q̂ ′
k , where q̂

′
k ∈ IRnk

+ is the unique solution of the equation (see Puterman 2005,

p. 592):

q′ = q′Pk subject to

nk∑
j=1

qj = 1. (5.4)

Let p̂ ′
k = (0, ..., 0, q̂ ′

k , 0, ..., 0) be the ns-dimensional vector with q̂k at the nk

elements corresponding to si ∈ Ek and 0 elsewhere. Then, when the state

process departs from a recurrent set Ek ⊆ S1, the event occurrence probability

(the probability to enter the occurrence state κ) is zero and the optimal state

process converges in the long run to the steady state distribution p̂k.

Departing from a recurrent subset containing at least one “unsafe” state

(su, say), implies that the event will (eventually) occur with probability one.

This is so because each time the “unsafe” state su is visited an occurrence

probability of 1− λ∗
u > 0 is inflicted and (once in Ek * S1) visits to su never

stop prior to the event occurrence.9 It follows that the limiting probability

of all si ∈ S vanish and the limiting probability of κ (the occurrence state) is

one. We summarize the above discussion in:

Proposition 5.1. Suppose the state process departs from one of the recurrent

sets Ek, k = 1, 2, ..., K.

(i) If Ek ⊆ S1, then the event-occurrence probability is zero and the optimal

state process converges in the long run to the steady state distribution p̂k.

(ii) If Ek * S1, then the long-run event-occurrence probability (the limiting

probability of the occurrence state κ) is 1 and the long-run probabilities of all

9Suppose, without loss of generality, that su is the only “unsafe” state in Ek and notice
that, unless interrupted by the event, the recurrent state su will be visited infinite number
of times with probability one. Occurrence may happen on the first visit with probability
1 − λ∗

u or on the second visit with probability λ∗
u(1 − λ∗

u) or on the third visit with prob-
ability λ∗2

u (1 − λ∗
u) and so on. Summing all possibilities gives the occurrence probability

(1− λ∗
u)
∑∞

j=0(λ
∗
u)

j = 1.
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states in S vanish.

Suppose now that the state process departs from a transient state sj ∈ E0.

The optimal state process must eventually exit E0 to one of the recurrent sets

Ek, k = 1, 2, ..., K, or to the event-occurrence set EK+1 ≡ {κ} – a recurrent,

absorbing set on its own. To specify the probability of each of these possibili-

ties, let Q̃1
0 be the n0×(K+1) matrix whose (j, k) elements equal the one-period

probability of moving from sj ∈ E0 to a state in Ek, k = 1, 2, ..., K + 1:

Q̃1
0(j, k) ≡ Pr{St+1 ∈ Ek|St = sj ∈ E0, φ

∗(sj)} =
∑
si∈Ek

Qφ∗(j, i), k = 1, 2, ..., K,

and

Q̃1
0(j,K + 1) ≡ Pr{St+1 = κ|St = sj ∈ E0, φ

∗(sj)} = 1− λ∗
j .

Define

Q̃0 = (I −Q0)
−1Q̃1

0, (5.5)

where Q0 is the n0 × n0 submatrix of Qφ∗ corresponding to the n0 transient

states. We verify in Appendix B that (i) Q̃0 exists and (ii) when departing

from sj ∈ E0, the probabilities that the optimal state process will exit the tran-

sient set E0 into Ek, k = 1, 2, ..., K, are given by Q̃0(j, k), k = 1, 2, ..., K, and

the probability that it will exit E0 into κ equals Q̃0(j,K + 1). Consequently,

noting Proposition 5.1, when the state process departs from a transient state

sj ∈ E0, the steady-state distribution of states in S is given by

K∑
k=1

Q̃0(j, k)p̂k (5.6a)

and the steady state probability of the event occurrence state κ is

∑
Ek*S1

Q̃0(j, k), (5.6b)
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where the sum in (5.6b) extends over k = 1, 2, ..., K + 1. We summarize the

above discussion in:

Proposition 5.2. When the state process departs from a transient state sj ∈

E0, the optimal state process converges in the long run to the steady state

distribution specified in (5.6a)-(5.6b).

Together, Propositions 5.1 and 5.2 establish the convergence of the opti-

mal state process to a well-specified steady-state distribution. This long-run

distribution provides a reference by which to evaluate the actual state of the

resource – depending on how far off the actual state distribution has been from

the optimal long-run distribution. Such information is particulary useful in

the present context, as the catastrophic threat may rule some resource states

prohibitive when their long-run probabilities vanish.

6 A numerical illustration

The Kinneret water basin (Lake Kinneret is also known as Lake Tiberias or

the Sea of Galilee) is the largest of Israel’s natural water sources, providing over

30 percent of the country’s natural water supply on average. Like other mod-

erately shallow lakes10 (Harper 1992, Mäler 2000), it faces a threat of abrupt

ecosystem collapse as the pollution loading may trigger a eutrophication pro-

cess.11 The risk of such abrupt regime-shift depends on the lake’s water head

(stock). This property, together with the highly volatile recharge process (Fig-

10Lake Kinneret’s maximal and average water depths are 46 m and 25 m, respectively
(Gvirtzman 2002, p. 34).

11A lower water-head raises the concentration of nutrients at the top layer and, in turn,
increases algal activity. An aggressive algal bloom may trigger a eutrophication process (see
Serruya and pollingher Serruya and Pollingher (1977) and Gvirtzman (Gvirtzman 2002, pp.
43-55)).
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ure 1), render the above framework particularly suitable for demonstrating our

analysis.

In the next subsection we describe the basin’s recharge process and derive

its distribution. Subsection 6.2 defines states and actions and subsection

6.3 derives the ensuing transition probabilities. The rewards are specified in

subsection 6.4, paying special attention to the catastrophic threat associated

with over-exploitation.12 In subsection 6.5 we apply an algorithm based on

Linear Programming (LP) for solving Markov decision Processes (MDPs) and

derive the optimal policy and value (the algorithm is described in Appendix C).

Finally, the steady state distribution under the optimal policy is calculated in

subsection 6.6.

6.1 Recharge process

Figure 1 presents the Kinneret’s net (accounting for evaporation) annual

recharge for the period 1932 - 2008. We use the gamma distribution to ap-

proximate the recharge distribution, i.e., we assume that the recharge series

consists of iid draws from a gamma distribution with parameters α and θ,

satisfying

αθ = Mean(recharge) - Min(recharge) = 570.38− 157 = 413.38 MCMY

and

αθ2 = Var(recharge) = 77333.8,

where MCMY stands for million m3 per year (the mean, min and standard

deviation of the recharge series are displayed in Figure 1). We obtain α =

12All benefit and cost calculations are based on ad hoc assumptions regarding the derived
demand for water and the cost of water supply, made for the illustration purposes only and
should not be given any empirical connotations.
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2.20967 and θ = 187.077. Figure 2 depicts the empirical distribution of the

recharge series (dots) and the gamma distribution with the above (α, θ) pa-

rameters.

Figure 1

Figure 2

The support of the recharge distribution is denoted X = {x1, x2, ..., xnx},

with x1 = 150 MCMY (the minimal recharge realization – see Figure 1),

xnx = 1450 MCMY (approximately the maximal recharge realization) and

xℓ+1 − xℓ = ∆x, ℓ = 1, 2, ..., nx − 1. Thus,

xℓ = 150 + (ℓ− 1)∆x, ℓ = 1, 2, ..., nx, (6.1)

and px|s(xℓ) is calculated as

px|s(xℓ) =


F (xℓ +∆x/2) if ℓ = 1

F (xℓ +∆x/2)− F (xℓ −∆x/2) if 2 ≤ ℓ ≤ nx − 1

1− F (xℓ −∆x/2) if ℓ = nx

(6.2)

where F (·) is the gamma distribution specified above (and depicted in Figure

2). Since nx and ∆x are related according to xnx = x1+(nx−1)∆x, setting one

parameter determines the other. Setting ∆x = 50 MCMY implies nx = 15.

6.2 States and actions

The Kinneret water-head ranges between the altitudes 208.8 and 215 meter

below sea level (−208.8 m and −215 m, respectively). Above the upper water-

head (−208.8 m) the water overflows the lake’s edges (flooding is avoided by

opening the gates of the Degania dam at the southern outlet of the lake leading

into the lower Jordan river). The lower altitude (-215 m) is the minimal water
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head level at which water can be pumped (due to pumping infrastructure) and

is designated as the black line.13 In between there is the so-called red line

– an imaginary water-head level indicating a critical water stock below which

the above-mentioned catastrophic risk increases sharply. The red line is set

at -213 m.14

The water stock corresponding to the black line is normalized at zero and

each meter of water-head above the black line is equivalent to 165 - 170 million

m3 (MCM).15 A water state corresponds to the water stock above the black

line, so s = 0 when the water-head level is at -215 m, s = 300 MCM when the

water head is at the red line (-213 m) and s = s̄ = 1000 when the water-head

level is at -208.8 m. The admissible state set is S = {s1, s2, ..., sns}, where

the sj’s are evenly spread apart. Setting sj+1 − sj ≡ ∆s = 50 MCM gives

ns = 21 states.

An action a corresponds to pumping a million m3 per year (MCMY). The

admissible action set is A = {a1, a2, ..., ana} with a1 = 0, ana = 700 MCMY

(determined by the existing pumping infrastructure) and aj+1 − aj = ∆a, j =

1, 2, ..., na − 1. Setting ∆a = 50 MCMY implies na = 15.

A time period (a year) in the present case begins at the end of the rainy

season (the bulk of the rain in Israel’s Mediterranean weather occurs during

the months of November through April) while water extraction occurs mostly

during the dry season (May - October). It is therefore not feasible to extract

more than the water stock available at the beginning of the period, i.e., given

the water stock St at the beginning of period t, gt ≤ St. Thus, A(St) = {ak ∈
13The exact minimal water head from which pumping is feasible is -214.87 m and we

round it to -215 m.
14The red line has been modified in the past in response to pressure to increase pumping

during dry years (see Gvirtzman 2002, p. 36).
15The range is due to differences in the surface of the lake at different water levels.
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A|ak ≤ St}. At the end of the dry season, the water stock will reach the

level St − gt ≥ 0 and this level affects the catastrophic hazard, as explained in

subsection 6.4.

6.3 Transition probabilities

The transition probabilities, conditional on nonoccurrence, are

p(j|i, ak) = Pr{St+1 = sj|St = si, gt = ak}

= Pr{R(St) +Xt = sj − si + ak}

= px|s(sj − si + ak}, j, i = 1, 2, ..., ns, k = 1, 2, ..., na, (6.3)

where px|s(·) is defined in (6.2).

6.4 Period-t benefit

The immediate reward at time t, specified in (3.8), is repeated here for

convenience:

b(St, gt) = b̃(St, gt) + vp(St)[1− λ(St, gt)].

The first term on the right-hand side is the benefit enjoyed during non-occurrence

periods; the second term is the benefit under the interrupting regime-shift,

namely the post-event value weighted by the occurrence probability. The for-

mer consists of the surplus water users (irrigators, households, industry) derive

from the pumped water gt net of the supply cost (extraction, conveyance, treat-

ment, distribution); the latter stems from the forgone benefit associated with

not being able to use the lake for a prolong period of time. We discuss each

in turn.
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6.4.1 Immediate benefits during non-occurrence periods

Let D(·) denote the inverse demand facing the Kinneret’s water, i.e., at a

water price $D(a) per million m3 (MCM) the water demand is a million m3

per year (MCMY). Let C(a) represent the cost of supplying a MCMY. The

consumer surplus, net of the supply cost, associated with the consumption of

a MCMY is ∫ a

0

D(ξ)dξ − C(a).

Assuming that the derived demand for water is inversely related to the

water price, i.e., D(a) = c1/(a + 1), and that C(a) = c2a, the net consumer

surplus becomes

b̃(s, a) = c1 ln(a+ 1)− c2a, (6.4)

where c1 is a positive demand parameter and c2 is the unit cost of water supply.

Assuming further that at a price of $0.5 × 106 per MCM ($0.5 per m3) the

water demand is 600 MCMY implies c1 = 300× 106. The unit cost of supply

is taken at $0.2× 106 per MCM (c2 = 0.2× 106).

6.4.2 Post-event value and occurrence probability

We consider the case in which the event (the abrupt regime shift) renders

the lake’s water unusable for a very long period and take the post-event value

vp to represent the forgone consumer surplus (i.e., the benefit water users could

derive had the regime shift been prevented) as well as ecological damages and

loss of recreational opportunities. We estimate this forgone value by the

present value of constant flow b̃(s, a) evaluated at a = 550 MCMY (which

is about the average recharge). Thus, with the discount factor β = 0.9434
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(corresponding to 6% interest rate) and the above specification of b̃,

vp = −b̃(s, 550)/(1− β) ≈ −3× 1010.

The survival probability λ(St, gt) equals one if St − gt (the minimal water

stock during time period t) does not fall below the critical water stock sc = 300

MCM corresponding to the red line. As soon as the water-head drops below

the red line, the survival probability decreases and reaches λ(0) = λ0 ≥ 0

at s = 0 (the black line). We use the following specification of the survival

probability:

λ(s, a) =

{
λ0 + (1− λ0) exp{δ(s− a− sc)/(s− a)} if s− a < sc

1 if s− a ≥ sc
(6.5)

where δ is a (positive) shape parameter. Indeed for a = s, exploitation brings

the water stock to the black line and λ(s, s) = λ0.

The immediate benefit specializes to

b(s, a) = c1 ln(a+1)−c2a+vp(1−λ0)max{1−exp[δ(s−a−sc)/(s−a)], 0}. (6.6)

The function specifications and parameter values are summarized in Table 1.

Table 1

6.5 Optimal policy and value

We calculate the optimal policy using an algorithm based on Linear Pro-

gramming (LP). Appendix C describes the algorithm and its application in the

present case. The algorithm provides the optimal policy φ∗(si), i = 1, 2, ..., ns,

depicted in Figure 3.

Figure 3
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Noting (A.9) and ṽ = v∗, the value v∗ = (v∗(s1), ..., v
∗(sns))

′ is calculated

by

v∗ = (I − βQφ∗)−1bφ∗ , (6.7)

where bφ∗ = (b(s1, φ
∗(s1)), ..., b(sns , φ

∗(sns))
′ and Qφ∗ is the ns × ns matrix

with λ(si, φ
∗(si))p(j|i, φ∗(si)) as the (i, j) element. The value is depicted in

Figure 4.

Figure 4

6.6 Steady state

From the optimal extraction policy in Figure 3 we conclude that there is

one recurrent, irreducible subset E1 = {450, 500, ..., 1000}, and all states below

450 MCM are transient. This is so because the optimal extraction policy is

such that it is not optimal to intentionally drop the water stock below 300

MCM (the red line) at the end of the dry season, and the minimal recharge

(during the rainy season) is 150 MCMY. Thus, at the end of the year the

water stock will be at or above 450 MCM. Water stocks (at the end of the

rainy season) below 450 can only be encountered initially and for a limited

number of periods (until recharge increases the stock), hence are transient.16

The λ∗
j data of Figure 3 reveal that E1 contains only “safe” states (λ∗

i = 1

for all si ∈ E1). Thus, once the optimal state process enters E1 the event will

never occur (the environmental threat is removed).

The steady state probabilities, characterized in Proposition 5.1 and applied

with the above E1, are depicted in Figure 5. In the long run (steady state),

under the optimal policy, the stock never drops below 450 MCM (the red line,

16This state classification can be reached also by applying the procedure described in
(Puterman 2005, p. 590) on the transition matrix Pφ∗ .
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below which the environmental threat is activated, is at 300 MCM). This

allows pumping at least 150 MCMY without drawing the water head below

the red line (recall that the water head at the end of the dry season reaches

St − gt), thereby providing a buffer against bad draws (dry years).

Figure 5

The average long-run stock and extraction are, respectively,

ŝ =
ns∑
j=1

q∗j sj = 834.003 MCM

and

ĝ =
ns∑
j=1

q∗jφ
∗(sj) = 494.211 MCMY.

If the recharge were stable at the mean x̄ = 570.38 MCMY (see Figure

1), the steady-state extraction were set at this rate and this policy could have

been maintained at a much lower stock level, e.g., at 300 MCM corresponding

to the threshold stock (the red line water-head level). The higher (average)

stock constitutes a buffer that allows mitigating extraction fluctuations, in

spite of the stochastically fluctuating recharge, by drawing down the stock

during bad (low recharge) years and filling it up during good (high recharge)

years. On average, extractions are slightly less than the average recharge

(494 MCMY vs. 570 MCMY), while under the steady state distribution the

optimal extractions’ standard deviation,√√√√ ns∑
j=1

q̂j[φ∗(sj)− ĝ]2 = 117.225,

is substantially smaller than the recharge process’ standard deviation of 278.09

(see Figure 1). The latter owes to the buffer role of the water stock (this effect

is akin to the buffer value proposed in Tsur and Graham-Tomasi (1991)).
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The large long-run probability of the full capacity stock (the steady-state

probability of s = 1000 MCM is about 1/3, implying that, under the opti-

mal policy, in the long run the lake should be filled up every third winter

on average) is an outcome of the policy of maintaining a large average stock

(as a buffer against a series of dry years). Thus, it pays to let more water

flow into the lower Jordan river (by opening the gates of Degania dam at the

lake’s southern outlet during rainy years) in order to have the buffer stock

available during dry years. We note that this property is linked to the particu-

lar specifications and parameter values of Table 1, set for illustration purpose

only.

7 Concluding comments

Exploitation has diminished the capacity of many renewable resources to

endure stress, increasing their vulnerability to extreme environmental condi-

tions that may trigger abrupt changes. The onset of such events depends on

the coincidence of extreme environmental conditions and the resource state.

When both of these elements are uncertain, the uncertainty associated with

the event occurrence is the result of their combined effect. We analyzed

resource management in such a setting.

The environmental threat affects management policies in two ways: first,

it changes the immediate benefit flow; second, it turns the running discount

factor endogenous to the exploitation policy and the compound discount factor

becomes history-dependent. The consequences regarding the existence of

an optimal Markovian-Deterministic stationary policy can be detrimental, as

demonstrated by an example. Nonetheless, we establish the existence of such
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a policy and show that the optimal state process converges in the long run

to a well specified steady-state distribution. A numerical example illustrates

these properties.

The environmental threat is manifest in our framework via the abrupt

change – the regime shift or event occurrence (ecosystem collapse, biomass ex-

tinction) – and a key feature in the analysis is the distinction between the pre-

and post-event regimes. Different resources have different pre-event regimes;

different environmental threats entail different post-event regimes. The frame-

work developed here provides a basis for studying a host of renewable resource

situations under a wide variety of environmental threats.
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Appendix

A Existence of optimal stationary policy

We prove an extended version of Theorem 4.1, which makes use of the fol-

lowing definitions and notation. Recall that without the catastrophic threat,

i.e., when the survival probability λ(s, a) = 1 for all s ∈ S and a ∈ A, the

discount factor is constant and the optimality equations are

v(si) = max
ai∈A(si)

{
b(si, ai) + β

ns∑
j=1

p(j|i, ai)v(sj)

}
, i = 1, 2, ..., ns,

or in matrix notation

v = max
a∈A

{ba + βPav} ,

where v = (v(s1), ..., v(sns))
′, a = (a1, ..., ans) ∈ A(s1) × · · · × A(sns) = A(s),

ba = (b(s1, a1), ..., b(sns , ans))
′ and Pa is the ns × ns matrix with the (i, j) ele-

ment given by p(j|i, a). In the presence of environmental threat, the discount

factor βλ(si, a) is state-and-action-dependent and the optimality equations

become

v(si) = max
ai∈A(si)

{
b(si, ai) + βλ(si, ai)

ns∑
j=1

p(j|i, ai)v(sj)

}
, i = 1, 2, ..., ns,

(A.1)

or in matrix notation

v = max
a∈A

{ba + βQav}, (A.2)

where Qa is an ns×ns matrix with (i, j) element given by λ(si, a)p(j|i, a) (the

i’th row of Qa equals λ(si, a) times the i’th row of Pa).

Let V be the space of bounded functions on S endowed with the supremum

norm ∥v∥ = sups∈S v(s). Define the mapping L : V 7→ V :

L(v)i = max
ai∈A(si)

{
b(si, ai) + βλ(si, ai)

ns∑
j=1

p(j|i, ai)v(sj)

}
, i = 1, 2, ..., ns,
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or in matrix notation

L(v) = max
a∈A

{ba + βQav} . (A.3)

The optimality equations can be expressed in terms of L as

v(si) = L(v)i, i = 1, 2, ..., ns,

or in matrix notation as

v = L(v). (A.4)

We can now establish the following extended Theorem 4.1:

Theorem A.1. Suppose that (A1) 0 ≤ β < 1, (A2) S is discrete (finite or

countable), (A3) b̃ : S × A 7→ IR and vp : S 7→ IR are bounded and (A4)

b̃(si, a) and λ(si, a)p(j|i, a) are continuous in a, and A(si) is compact for all

si, sj ∈ S. Then:

(i) the optimal value v∗ is the unique fixed point of (A.4);

(ii) a stationary policy φ is optimal if and only if the actions ai = φ(si), i =

1, 2, ..., ns, realize the maxima in (A.1);

(iii) there exists an optimal, Markovian-Deterministic stationary policy φ∗,

i.e., the policy (φ∗, φ∗, ...) satisfies

vφ
∗
(s) = v∗(s) ∀s ∈ S. (A.5)

Proof. Assumptions (A3)-(A4) ensure that the maxima in (A.1) are attained.

For a given v ∈ V , let ai(v), i = 1, 2, ..., ns, denote the actions where the

maxima in (A.1) are attained. Then, for any u ∈ V we have

L(u)i ≥

{
b(si, ai(v)) + βλ(si, ai(v))

ns∑
j=1

p(j|i, ai(v))uj

}
, i = 1, 2, ..., ns,
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which together with

L(v)i = b(si, ai(v)) + βλ(si, ai(v))
ns∑
j=1

p(j|i, ai(v))vj

implies

L(v)i − L(u)i ≤ βλ(si, ai(v))
ns∑
j=1

p(j|i, ai(v))(vj − uj), i = 1, 2, ..., ns. (A.6)

Since
∑ns

j=1 p(j|i, ai(v)) = 1, we conclude from (A.6) that

L(v)i − L(u)i ≤ βλ(si, ai(v))max
j

|vj − uj|, i = 1, 2, ..., ns.

Since βλ(si, ai(v)) ≤ β < 1, we can further conclude that

max
i

{L(v)i − L(u)i} ≤ βmax
j

|vj − uj|.

Interchanging in the above inequality the roles of u and v we obtain

max
i

|L(v)i − L(u)i| ≤ βmax
j

|vj − uj|. (A.7)

It follows from (A.7) and (A1) that L is a contraction, implying the existence

of a unique fixed point of (A.4). Denote this fixed point by ṽ. We next show

that ṽ = v∗.

Let a∗i , i = 1, 2, ..., ns, be the actions that realize the maxima in (A.1), and

define φ∗(si) = a∗i . Then,

ṽ(si) = b(si, φ
∗(si)) + βλ(si, φ

∗(si))
ns∑
j=1

p(j|i, φ∗(si))ṽ(sj), si ∈ S, (A.8)

or in vector notation

ṽ = bφ∗ + βQφ∗ ṽ, (A.9)

where bφ∗ = (b(s1, φ
∗(s1)), ..., b(sns , φ

∗(sns)))
′ and Qφ∗ is the ns × ns matrix

with the (i, j) element given by λ(si, φ
∗(si))p(j|i, φ∗(si)).
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Evaluating (A.8) at time t, with si = St and gt = φ∗(St), gives

ṽ(St) = b(St, φ
⋆(St)) + βλ(St, φ

∗(St))
ns∑
j=1

p(j|St, φ
⋆(St))ṽ(sj)

= b(St, φ
⋆(St)) + βλ(St, φ

∗(St))E
φ∗

t ṽ(St+1), (A.10)

where Eφ∗

t denotes expectation under the gt = φ∗(St) decision rule conditional

on the information available at time t (which includes St). Multiplying (A.10)

by γφ∗
(t), where γ(t) is defined in (3.5) under the gt = φ∗(St) decision rule,

and rearranging gives

b(St, φ
⋆(St))γ

φ∗
(t) = ṽ(St)γ

φ∗
(t)− γφ∗

(t+ 1)Eφ∗

t ṽ(St+1). (A.11)

Since γφ∗
(t + 1) depends only on information available at time t, the second

term on the right hand side of (A.11) can be written as

γφ∗
(t+ 1)Eφ∗

t ṽ(St+1) = Eφ∗

t

[
γφ∗

(t+ 1)ṽ(St+1)
]

and (A.11) is written as

b(St, φ
∗(St))γ

φ∗
(t) = γφ∗

(t)ṽ(St)− Eφ∗

t

[
γφ∗

(t+ 1)ṽ(St+1)
]
.

Taking the unconditional expectation under the φ∗(·) decision rule yields

Eφ∗
b(St, φ

⋆(St))γ
φ∗
(t) = Eφ∗

γφ∗
(t)ṽ(St)− Eφ∗

γφ∗
(t+ 1)ṽ(St+1).

Summing over t = 1, 2, ..., τ gives

Eφ∗
τ∑

t=1

b(St, φ
⋆(St))γ

φ∗
(t) = ṽ(S1)− Eφ∗

γφ∗
(τ + 1)ṽ(Sτ+1). (A.12)

Since γφ∗
(τ) → 0 exponentially (uniformly in the policies), letting τ → ∞ in

(A.12) yields

Eφ∗
∞∑
t=1

b(St, φ
∗(St))γ

φ∗
(t) = ṽ(S1), (A.13)
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where we use the property that si 7→ ṽ(si), si ∈ S, is a bounded function,

namely ṽ is a bounded solution of (A.2), which is guaranteed by (A3).

For an arbitrary policy φ(·) we can repeat the above derivation with in-

equalities rather than equalities, obtaining

ṽ(St) ≥ b(St, φ(St)) + βλ(St, φ(St))
ns∑
j=1

p(j|St, φ(St))ṽ(sj)

instead of (A.10) and

Eφ

∞∑
t=1

b(St, φ(St))γ
φ(t) ≤ ṽ(S1)

instead of (A.13). It follows that φ⋆(s) is an optimal policy and ṽ(s) = v∗(s),

establishing claims (i) and (ii) of the theorem. As indicated above, the only

condition for the existence of φ∗(·) is that there exists a bounded solution for

(A.2), which follows from condition (A3) and claim (i), establishing (iii).

B Transient states probabilities

Suppose the state process departs from a transient state sj ∈ E0 and

consider the n0 × (K + 1) matrix Q̃0 defined in equation (5.5). We verify

that Q̃0(j, k), k = 1, 2, ..., K, are the probabilities that the optimal state

process will exit the transient set E0 into the recurrent set Ek, k = 1, 2, ..., K,

respectively, and Q̃0(j,K + 1) is the probability that it will exit E0 into the

event occurrence set EK+1 ≡ {κ}. Recall that Q̃1
0 is the n0 × (K + 1) matrix

whose (j, k) elements give the one-period probabilities of moving from sj ∈ E0

to Ek, k = 1, 2, ..., K + 1. Then, Q̃0(j, k) satisfies

Q̃0(j, k) = Q̃1
0(j, k) +

∑
{l|sl∈E0}

Qφ∗(j, l)Q̃0(l, k), sj ∈ E0, k = 1, 2, ..., K + 1.

31



In matrix notation, the above is expressed as

Q0K = Q̃1
0K +Q0Q0K ,

where Q0 is the n0 × n0 submatrix of Qφ∗ corresponding to the n0 transient

states. Thus, equation (5.5) follows if the inverse matrix (I − Q0)
−1 exists.

To show this, note that, since the optimal state process cannot reside in the

transient set E0 forever, it must be that Qn
0 → 0 as n → ∞. This implies

that the eigenvalues of Q0 are all smaller than one in absolute value (to verify

this use the Jordan canonical form of Q0), hence Qn
0 → 0 exponentially and

(I −Q0)
−1 =

∑∞
n=0 Q

n
0 exists.

C The LP algorithm for calculating optimal

policies of MDPs

Puterman (Puterman 2005, Chapter 6) presents a variety of algorithms for

calculating optimal policies of Markov decision processes (MDPs). We use the

algorithm based on Linear Programming (LP), adopted to the present case of

a state-dependent discount factor. We briefly describe the algorithm and its

application.

C.1 The LP approach for solving MDPs

The algorithm is based on the following property:

Proposition C.1. If v ∈ V satisfies v ≥ L(v), then v ≥ v∗.

Proof. The mapping L, defined in (A.3), is monotonic, i.e., for v, u ∈ V , v ≥ u

implies L(v) ≥ L(u). This property follows from β ≥ 0 and Qa(i, j) ≥

0 ∀(i, j). Thus, v ≥ L(v) implies L(v) ≥ L(L(v)) ≡ L2(v), hence v ≥ L(v)
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implies v ≥ L2(v). Repeating this reasoning, we find that v ≥ L(V ) implies

v ≥ Lk(v) for k = 1, 2, .... Letting k → ∞, recalling that L is a contraction

and v∗ is the unique fixed point of v = L(v) (Theorem 4.1), establishes the

result.

It follows that the inequality v ≥ L(v), or in component notation

vi ≥ b(si, ak) + βλ(si, ak)
∑
j

p(j|i, ak)vj ∀ak ∈ A(si), i = 1, 2, ..., ns,

can at best hold as equality, in which case v = v∗. This suggests the following

(primal) Linear Programming (LP) problem for finding v∗:

Set αj > 0, j = 1, 2, ..., ns, satisfying
∑

j αj = 1 (any positive αj will do but

the requirement that they sum to one allows a probability interpretation) and

find (unconstrained) vj, j = 1, 2, ..., ns, in order to minimize

ns∑
j=1

αjvj

subject to

vi − βλ(si, ak)
ns∑
j=1

p(j|i, ak)vj ≥ b(si, ak) ∀ak ∈ A(si), i = 1, 2, ..., ns.

This LP problem has ns unknowns (columns) and
∑ns

i=1 nai constraints (rows),

where nai is the number of actions in A(si).

The dual to the above LP problem is formulated as follows:

Find x(si, ak) ≥ 0, i = 1, 2, ..., ns, ak ∈ A(si), in order to maximize

ns∑
i=1

∑
ak∈A(si)

b(si, ak)x(si, ak) (C.1)

subject to∑
ak∈A(sj)

x(sj, ak)−
ns∑
i=1

∑
ak∈A(si)

βλ(si, ak)p(j|i, ak)x(si, ak) = αj, j = 1, 2, ..., ns.

(C.2)
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The dual LP has
∑ns

i=1 nai unknowns (columns) and ns constraints (rows).

The number of constraints is smaller than that of the primal LP problem,

which renders the dual LP more tractable. Properties of the dual LP problem,

including a verification that a basic solution exists, are discussed in Puterman

(2005, pp. 223-231).

Let x∗(si, ak), i = 1, 2, ..., ns, k = 1, 2, ..., nai , denote the solution of the

dual LP. Since the dual LP has ns constraints, only ns out of the
∑ns

i=1 nai

elements of x∗ are positive. Moreover, for any state si only one x∗(si, ak) > 0.

The optimal (Markov-deterministic) stationary policy is specified as

φ∗(si) =
∑

ak∈A(si)

1(x∗(si, ak) > 0)ak, i = 1, 2, ..., ns, (C.3)

where 1(·) assumes the values 1 or 0 when its argument is true or false, re-

spectively.

C.2 LP specification in the present case

Let D(i, k) = 1 or 0 as si ≥ ak or si < ak, respectively. Thus, D(i, k) = 1

if the action ak is feasible at si and D(i, k) = 0 otherwise (see discussion in

subsection 6.2). Let B be the ns × na matrix with the i, k element given by

b(si, ak)D(i, k), where b(s, a) is defined in (6.6). The LP objective (C.1) can

be rendered as
ns∑
i=1

na∑
k=1

B(i, k)x(i, k). (C.4)

Similarly, let p̃(j|i, ak) = λ(si, ak)p(j|i, ak)D(i, k), where p(j|i, ak) is defined

in (6.3). Then

ns∑
i=1

∑
ak∈A(si)

p(j|i, ak)x(i, k) =
ns∑
i=1

na∑
k=1

p̃(j|i, ak)x(i, k)
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and the dual LP constraints (C.2) can be expressed as

ns∑
i=1

na∑
k=1

D(i, k)x(i, k)−β
ns∑
i=1

na∑
k=1

p̃(j|i, k)x(i, k) = 1/ns, j = 1, 2, ..., ns, (C.5)

where we set αj = 1/ns, j = 1, 2, ..., ns.

The LP problem then is to find x(i, k) ≥ 0, i = 1, 2, ..., ns, k = 1, 2, ..., na,

in order to maximize (C.4) subject to (C.5).

D A non-existence example

Theorem 4.1 extends a result that holds for standard state-dependent mod-

els to a history-dependent situation. The dependence on the whole history has

a specific form, which enables this extension. We describe here an example in

which the history-dependence of the process is such that there does not exist

an optimal deterministic stationary policy.

Consider an MDP with two states, s1 and s2, and three actions, a1, a2 and

a3, such that the following holds:

1

2
< p(s1|s2, a1), p(s2|s1, a1) < 1, (D.1)

0 < p(s1|s2, a2), p(s2|s1, a2) <
1

2
(D.2)

and

p(s1|s1, a3) = p(s2|s2, a3) = 1. (D.3)

The state process is {St}∞t=0 and the action at time t is gt. The running (single

period) rewards c(s1, a1), c(s1, a2), c(s2, a1), and c(s2, a2) are negative and of

order 1, and

c(s1, a3) = c(s2, a3) = −M, M >> 1. (D.4)
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There are 9 possible deterministic stationary policies, and we assume that if

(p̂1, p̂2) is a stationary equilibrium distribution then (the above parameters are

so chosen that)

(p̂1, p̂2) ̸= (0.5, 0.5). (D.5)

The discount factor γ(Ht) at time t depends on the history Ht at time t:

Ht = (S0, g0, S1, g1, ..., St−1, gt−1, St).

To define γ(Ht) we use the empirical distribution of the state, namely

νt(s1) =
#{0 ≤ j ≤ t : Sj = s1}

t+ 1
, νt(s2) = 1− νt(s1) (D.6)

and define

γ(Ht) =

{
0 if νt(St) < 0.5
1 if νt(St) ≥ 0.5.

(D.7)

Thus, e.g., if at time t we have St = s1 and νt(s1) < 1/2 then the reward at

time t is zero, and if νt(s1) ≥ 1/2 the reward is βtc(s1, gt) (which is a negative

number).

We seek to maximize

Cπ(S0) =
∞∑
t=0

γ(Ht)c(St, πt(Ht))

and we claim that there exists no optimal deterministic stationary policy which

maximizes Cπ. Suppose to the contrary, that π = {φ, φ, ...} is such a policy.

It follows from (D.3) and (D.4) that the actions φ(s1) and φ(s2) belong to

{a1, a2}. Let the equilibrium distribution under φ be (p̂1, p̂2), where we recall

that

0 < p̂1, p̂2 < 1 and p̂1 ̸= 0.5. (D.8)

We will construct a policy π0 with a higher payoff than π.
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Let

λ = min{p̂1, p̂2},

let ϵ > 0 be such that ϵ << λ and let t0 be a large integer such that

λ− ϵ < νt0(s1) < λ+ ϵ.

(How large t0 should be will be determined below.) Let

T = [t0(1− 2(λ+ ϵ))] (D.9)

where here [x] denotes the integer part of x. It follows from (D.8) that λ+ ϵ <

1/2 and therefore T → ∞ as t0 → ∞. It is then easy to see that

νt(s1) < 1/2 for every t0 ≤ t ≤ t0 + T.

For the policy π0 we take gt = a3 for t0 ≤ t ≤ t0+T , and it follows that St = s1

for every t0 ≤ t ≤ t0 + T . For t > t0 + T , π0 coincides with π. Comparing the

difference Cπ0(S0)−Cπ(S0) between the payoffs of π0 and π starting at S0, we

consider the corresponding rewards on the time interval t0 ≤ t ≤ t0 + T . The

difference on this time interval is larger than

βt0(µ− (β)T |d2 − d1|)

where

µ = min{|c(s1, a1)|, |c(s1, a2)|}

is positive and of order 1, and where d1 and d2 are the payoffs Cπ(s1) and

Cπ(s2) corresponding to s1 and s2 respectively. For large enough T , namely

for large enough t0 (recall (D.9)) this expression is positive, and hence the

payoff under π0 is strictly larger than that under π.
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Table 1: Specifications and parameter values

Function Form Description

b̃(s, a) c1 ln(a+ 1)− c2a Reward under no occurrence
vp(s) Constant Post-event value
λ(s, a) min

{
1, λ0 + (1− λ0)e

δ(s−a−sc)/(s−a)
}

Survival probability

Parameter Value Description
β 0.9434 Discount factor =1/(1+0.06)
α 2.20967 Recharge dist. parameter
θ 187.077 Recharge dist. parameter
∆s 50 MCM Diff between consecutive states
ns 21 Number of admissible states
∆a 50 MCMY Diff between consecutive actions
na 15 Number of admissible actions
∆x 50 MCMY Diffe between consecutive recharge
nx 26 Number of recharge points
c1 300× 106 Demand parameter
c2 0.2× 106 Unit supply cost
vp −3× 1010 Forgone benefit due to occurrence
sc 300 MCM Critical stock (at red line)
λ0 0.5 Survival prob at s = 0 (black line)
δ 0.2 Hazard parameter
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Mean 570.38

Million cubic meter per year

(MCMY)

Mean 570.38

Median 525

Maximum 1337

Minimum 157

Std. Dev. 278.09

Year

Figure 1: Lake Kinneret’s recharge series during 1932 - 2008. The descriptive
statistics are calculated for the 1980 - 2008 data.
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Figure 2: The gamma distribution with parameters α = 2.20967 and θ =
187.077 (solid) and the empirical distribution (dots) of the Kinneret’s recharge
series for the period 1980 - 2008.
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Figure 3: The optimal stationary Markov extraction policy φ∗(s) (MCMY)
for s = 0, 50, 100, ..., 1000. The data are reported to the right of the figure and
contain also the survival probabilities λ∗

j .
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0 0.0699987

50 1.02578

100 1.92885

v
*(sj) 1010

sj v
*(sj)

150 2.37428

200 2.63255

250 2.8008

300 2.91903

350 3.03599

400 3.05549

450 3 06655450 3.06655

500 3.07413

550 3.0798

600 3.08425

650 3.08786

700 3.09085

750 3.09338750 3.09338

800 3.09553

850 3.09739

900 3.09919

950 3.1008

1000 3.10226

Water stock (MCM above the black line)

Figure 4: The value vφ
∗
(s) (×1010 $) for s = 0, 50, 100, ..., 1000 MCM.
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150 0

200 0

250 0

300 0

350 0

400 0

450 0 00116072450 0.00116072

500 0.0173963

550 0.038434

600 0.0621503

650 0.0791231

700 0.0868794

750 0.0878662

800 0.0843703

850 0.0781758

900 0.0705778

950 0.0624706

1000 0.331396
Water stock (MCM above the black line)

Figure 5: Long run (steady state) probabilities.
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