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Abstract

Excessive exploitation diminishes the capacity of natural resources
to withstand environmental stress, increasing their vulnerability to ex-
treme conditions that may trigger abrupt changes. The onset of such
events depends on the coincidence of random environmental conditions
and the resource state (determining its resilience). Examples include
species extinction, ecosystem collapse, disease outburst and climate
change induced calamities. The policy response to the catastrophic
threat is measured in terms of its effect on the long-term behavior of
the resource state. To that end, the L-methodology, developed orig-
inally to study autonomous systems, is extended to non-autonomous
problems involving catastrophic threats.
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1 Introduction

Many resource situations reach the stage where further exploitation threat-

ens to trigger an abrupt event that, once occurred, changes the underlying

regime for the worst. When the conditions that trigger such events are well-

understood and predictable, the occurrence time T can, in principle, be con-

trolled. Often, however, these conditions are not well-understood or involve

genuine stochastic elements or both, in which case T can be determined only

up to a probability distribution that depends on the exploitation policy. An

early example is the exploitation of a stock of unknown size, studied by Kemp

(1976), where T stands for the depletion time. A slight extension of the term

“depletion” to include situations in which the resource can no longer be ex-

ploited or becomes obsolete allows one to associate T with an uncertain date

of nationalization (Long 1975) or with the occurrence date of various envi-

ronmental catastrophes (Cropper 1976). The same framework can be used

to consider advantageous events, such as the arrival of a backstop substitute

(Dasgupta and Heal 1974, Dasgupta and Stiglitz 1981).

While the uncertainty in the cake-eating problem of Kemp (1976) is solely

due to ignorance, the uncertainty in political (nationalization) or environmen-

tal events involves genuine stochastic elements. The distinction between the

two types of uncertainty plays out most pronouncedly via the specification

of the hazard rate function, measuring the probability density of the event

occurrence (the realization of T ) in the next time instant. In all of these

variants, the optimal policy maximizes the expected payoff, where the expec-

tation is taken with respect to the distribution of T . This distribution, in

turn, depends on the nature of the event (see the survey by Tsur and Zemel

1



2014a).

This work considers the type of catastrophic events that are triggered by a

confluence of conditions involving the resource state and genuinely stochastic

elements. Such events show up in a variety of resource situations, including

exploitation and exploration of nonrenewable resources (Deshmukh and Pliska

1985), biological resources vulnerable to a catastrophic collapse (Reed and

Heras 1992), forest fires (Reed 1984), pollution control (Clarke and Reed 1994,

Tsur and Zemel 1998), nuclear accidents (Cropper 1976, Aronsson et al. 1998),

ecological regime shift (Mäler 2000, Dasgupta and Mäler 2003, Mäler et al.

2003, Polasky et al. 2011, de Zeeuw and Zemel 2012), and climate change

induced calamities (Tsur and Zemel 1996, 2008, 2009, Gjerde et al. 1999,

Nævdal 2006, Bahn et al. 2008).

When a full analytic solution to the management problem is not available

(a common situation), the analysis is focused on long-term behavior as sum-

marized by the optimal steady state to which the system converges. A careful

examination of optimal steady states, then, allows discerning the impacts of

the catastrophic threat on optimal management policies. Recently, Tsur and

Zemel (2014b) generalized the L-method developed in Tsur and Zemel (2001)

to characterize the location, stability and approach time of optimal steady

states by means of a simple function of the resource state. The analysis

in Tsur and Zemel (2014b) is confined to single-state, infinite-horizon, au-

tonomous models. Here we extend the results to the situation of resource

management under risk of abrupt change. The difficulty is that the intro-

duction of catastrophic threats renders the underlying model non-autonomous

because the accumulated hazard depends explicitly on time. The problem

can be recast in an autonomous form at the cost of introducing a second state
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variable, but the two-states formulation also does not fall into the category

considered by Tsur and Zemel (2014b). Extending the L-method to problems

involving catastrophic threats allows deriving properties analogous to those

of risk-free models regarding the location and stability of the optimal steady

states.

The next section lays out the general framework and specifies the catas-

trophic threat. In Section 3, properties of optimal steady states under catas-

trophic threats are derived. Section 4 illustrates numerically the potential

effects of catastrophic threats on optimal resource management policies. Sec-

tion 5 concludes and the appendix contains technical derivations.

2 Setup

Let X(t) represent a resource or environmental state at time t, e.g., the

stock of mineral, freshwater, biomass or the concentration of some pollutants

in the soil, water or atmosphere. The state X(t) evolves in time according to

Ẋ(t) = g(X(t), c(t)), (2.1)

where the control variable c(t) represents the exploitation rate at time t. Given

the initial state X(0), an exploitation policy {c(t), t ≥ 0} generates the state

process {X(t), t ≥ 0} according to (2.1) and gives rise to the utility flow

{u(X(t), c(t)), t ≥ 0}.

The functions g(·, ·) and u(·, ·) are assumed to be twice continuously dif-

ferentiable and to satisfy

|gc| ≥ a > 0, ucc < 0, and (gcc/gc)uc ≥ 0 (2.2)

for all X ∈ (X, X̄) and c ∈ (c, c̄), where the subscripts denote partial deriva-

tives with respect to the corresponding arguments. The feasible domains of
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the state and the control, [X, X̄] and [c, c̄], represent physical or regulatory

constraints (see discussion in Tsur and Zemel 2014b), and a is a given posi-

tive constant. The bound on gc implies that the action chosen is effective in

controlling the evolution of the stock, while the curvature assumptions on u

and g ensure that the Hamiltonian is strictly concave in c (see Appendix B).

Notice that we impose no constraints on the signs of uX or gX , as the state X

can be beneficial (e.g., a biomass stock) or damaging (e.g., a pollution stock).

In addition to its contribution to the instantaneous utility u(·, ·), the state

X also affects the occurrence probability of a detrimental event of catastrophic

consequences. The catastrophic threat is characterized by the occurrence

probability and by what happens after occurrence. The consequences of

occurrence are represented by the post-event value φ(X). Examples of various

specifications of the post-event value are presented in Section 4.

Denote the event occurrence time by T and let F (t) = Pr{T ≤ t) and

f(t) = F ′(t) be the associated probability distribution and density functions,

as perceived at the initial time (t = 0). The stock-dependent hazard rate

h(X) is related to F (t) and f(t) according to

h(X(t))∆ = Pr{T ∈ (t, t+∆] |T > t} =
f(t)∆

1− F (t)
,

where ∆ is an infinitesimal time interval. Thus, h(X(t)) = −d ln(1−F (t))/dt,

implying

F (t) = 1− exp

(
−
∫ t

0

h(X(s))ds

)
and f(t) = h(X(t))[1− F (t)]. (2.3)

For beneficial states (e.g., when X is a productive stock), h(·) is non-increasing

(a higher stock entails a smaller occurrence probability), whereas for harmful

states (e.g., pollution), h(·) is non-decreasing.
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Given the occurrence time T , the exploitation policy {c(t), t ≥ 0} generates

the payoff ∫ T

0

u(X(t), c(t))e−ρtdt+ e−ρTφ(X(T )),

where ρ is the time rate of discount. Taking expectation with respect to the

distribution of T , noting (2.3), yields the expected payoff∫ ∞

0

U(X(t), c(t)) exp

(
−
∫ t

0

[ρ+ h(X(s))]ds

)
dt, (2.4)

where

U(X, c) ≡ u(X, c) + h(X)φ(X) (2.5)

is the catastrophic-threat inclusive instantaneous benefit. Note that the ex-

ponential term in the expected payoff (the hazard-inclusive discount factor)

renders the problem non-autonomous. Therefore, the problem falls outside

the class of models considered in Tsur and Zemel (2014b). We turn now to

extend the methodology of Tsur and Zemel (2014b) in order to characterize

the steady state properties of problems involving catastrophic threats.

3 Steady state properties

The optimal policy is the feasible policy that maximizes (2.4) subject to

(2.1) given X(0) = X0. We assume that an optimal policy exists and denote

the corresponding value (the expected payoff under the optimal policy) by

v(X0). An important feature of optimal trajectories of autonomous single

state problems carries over to the problem at hand:

Property 1. When the optimal state trajectory is unique, it must be mono-

tonic in time. If multiple optimal trajectories exist, at least one of them is

monotonic.
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To verify the claim, consider first the case where the optimal state trajec-

tory is unique. Notice that the exponential factor in the objective is similar to

a simple discount factor in that a manager reaching the state X at some time

t faces, at that time, the same optimization problem he would have to solve at

t = 0 if the initial stock were the same state X. This is so because the value of

exp
(
−
∫ t

0
[ρ+ h(X(s))]ds

)
serves at t merely as an overall normalization con-

stant for the objective which cannot affect future decisions. Consider now a

non-monotonic optimal state trajectory: there exist two distinct times t1 < t2

around a local extremum of the trajectory such that X(t1) = X(t2) = X

while Ẋ(t1) = g(X, c(t1)) ̸= Ẋ(t2) = g(X, c(t2)) so that c(t1) ̸= c(t2). But

the optimization problem at time t2 is identical to that at time t1, as both

state processes are initiated at the same stock X. Since c(t1) is optimal at

t1, setting c(t2) = c(t1) must also be optimal at t2. This contradicts the as-

sumption of a unique optimal trajectory. When the problem admits multiple

optimal solutions we can apply a consistent selection rule (e.g., always choose

the maximal optimal c) to obtain a monotonic optimal state trajectory. In

such cases, we shall always refer to the monotonic optimal process.

As the state space is bounded, the monotonic optimal state process must

converge to a steady state:

Property 2. The optimal state trajectory converges monotonically to a steady

state.

LetM(X) represent the (not necessarily optimal) steady state exploitation

policy satisfying

g(X,M(X)) = 0. (3.1)

It is assumed that M(X) exists and is feasible for all X ∈ [X, X̄]. Noting
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(2.2), the derivative

M ′(X) = −gX(X,M(X))/gc(X,M(X)) (3.2)

is well defined. Adopting the policy c = M(X) indefinitely leaves the state

fixed at X and yields the expected payoff

W (X) ≡ U(X,M(X))

ρ+ h(X)
≤ v(X), (3.3)

equality holding at the optimal steady state X̂.

Define the function L : [X, X̄] 7→ IR by

L(X) ≡ [ρ+ h(X)]

[
Uc(X,M(X))

gc(X,M(X))
+W ′(X)

]
, (3.4a)

which, using (3.2) and (3.3), can be expressed as1

L(X) =
Uc(X,M(X))

gc(X,M(X))
[ρ+ h(X)− gX(X,M(X))] +

UX(X,M(X))−W (X)h′(X). (3.4b)

The latter form shows how L(·) can be obtained from the model’s primitives

u(·, ·), g(·, ·), φ(·) and h(·).

Let X̂ denote an optimal steady state. The function L(·) is used to identify

candidates for such states as follows:

Property 3. (i) L(X̂) = 0 is necessary for X̂ ∈ (X , X̄); (ii) L(X) ≤ 0 is

necessary for X̂ = X; (iii) L(X̄) ≥ 0 is necessary for X̂ = X̄.

Property 3 extends Proposition 1 of Tsur and Zemel (2014b) to the present,

non-autonomous model. The proof is presented in Appendix A.

1The factor ρ+ h(·) in (3.4a) might appear redundant, as it affects neither the roots of
L(·) nor the sign of its derivative at these roots. However, in actual applications this factor
often simplifies the expression for L(·) which includes the W ′(·) term, while W (·) has the
factor ρ+ h(·) in its denominator.
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The property identifies two types of potential steady states: unconstrained

steady states, where L vanishes, and constrained (corner) steady states, where

L ̸= 0. Property 3 provides necessary conditions. In fact, not every root

of L qualifies as a stable steady state. The following result, which extends

Proposition 2 of Tsur and Zemel (2014b) to the present model, serves to narrow

down the list of candidates for a stable steady state:

Property 4. A root X of L(·) cannot be a stable steady state if L′(X) > 0.

The proof is presented in Appendix B.

The catastrophic threat affects the resource management problem via the

hazard rate, which enters the objective (2.4) both in the discount rate and

in the instantaneous benefit U . The running discount rate increases from ρ

to ρ+ h(X(t)), with two conflicting effects. First, the increased impatience

promotes aggressive exploitation (less conservation) because it reduces the

importance of future outcomes, thereby depresses motives to give up current

utility in favor of future benefits.

Second, the discount rate ρ + h(X) turns endogenous through its depen-

dence on the stock X. When the event is damaging (i.e., φ(X) < W (X))

and the state is beneficial (e.g., a biomass stock), the endogeneity effect en-

courages conservation because it calls for efforts to reduce the hazard. To see

this, note that the terms involving h′(·) in (3.4b) can be combined together

to form the positive expression h′(X)[φ(X)−W (X)].2 Recalling that L(·) is

decreasing at a stable steady state, this positive contribution acts to increase

the value of the root, representing a higher steady state stock and more con-

servative extraction. Which of these conflicting effects dominates depends on

2The h′(X)φ(X) term is obtained from UX .
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the magnitude of h′(X)/[ρ+ h(X)] and varies from case to case.3

Properties 3 and 4 extend the results of Tsur and Zemel (2014b) to the

present case of catastrophic threat. The current situation is more compli-

cated because the introduction of catastrophic threats renders the problem

non-autonomous, and this violates a requirement in Tsur and Zemel (2014b).

It turns out, however, that this difficulty can be overcome because in a small

vicinity of the steady state the variations in hazard are very small, hence the

non-autonomous term exp
(
−
∫ t

0
h(X(s))ds

)
is close to a simple exponential,

similar to the standard discount factor. Thus, with some modification, the

arguments of Tsur and Zemel (2014b) follow through, even though the corre-

sponding L function obtains additional terms that account for the effects of

the catastrophic threat on the optimal policy (see Appendix A).

Figure 1 illustrates the use of L(·) for identifying candidates for optimal

steady states according to Properties 3 and 4.

Figure 1: Possible L functions and the corresponding optimal stable steady states.

It follows from Properties 3 and 4 that X̂ is unique in the following cases:

Property 5. (i) If L(·) crosses zero once from above in [X , X̄], then the steady

3See the numerical illustration in Section 4 as well as the examples in Tsur and Zemel
(1998) and de Zeeuw and Zemel (2012).
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state X̂ falls on the unique root of L(·); (ii) If L(X) > 0 for all X ∈ [X , X̄],

then X̂ = X̄; (iii) If L(X) < 0 for all X ∈ [X , X̄], then X̂ = X .

In the next section we solve for the optimal steady states in several con-

crete examples with different catastrophic threats. The examples illustrate

how characteristic features of catastrophic events affect optimal management

policies in the long run.

4 Applications to various types of events

Catastrophic events are characterized by the corresponding post-event val-

ues and hazard rate functions. Events that impact ecosystems often entail

abrupt changes in the system dynamics. The post-event value in such cases

is the outcome of the management problem proceeding under the post-event

regime. The discrete regime shift is in many cases a simplified description of

the actual complex, non-convex behavior that underlies the ecosystem dynam-

ics (see Polasky et al. 2011, and references they cite). A slightly more general

formulation, offered by Tsur and Zemel (1998), describes the post-event value

φ(·) in terms of a penalty ψ inflicted upon occurrence. This formulation dis-

tinguishes between single occurrence and recurrent events. The latter allow

for multiple penalties inflicted each time the event occurs. Examples of single

occurrence events include disease outbursts, affecting fish, plants or animal

(including human) populations, following which there is no risk of another

outburst (because the disease has led to extinction or because the remaining

population became immune). As another example, consider the abrupt and

massive intrusion of saline or polluted water into a freshwater lake or aquifer,

which is rendered thereafter obsolete.
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Recurrent events inflict a penalty ψ upon occurrence but otherwise do not

change the underlying resource dynamics and the post-event problem contin-

ues under the same occurrence risk as before. The post-event value in such

cases equals the pre-event value at the state of occurrence minus the penalty.

Various climate change induced calamities are of this nature, e.g., category

five hurricanes or forest fires (Reed 1984) with occurrence hazards that de-

pend on climate parameters which in turn may vary with the atmospheric

concentration of greenhouse gases.

In the examples below X represents a pollution stock, accumulated due to

emissions from production activities. The latter generate a constant income

stream which is allocated between consumption c(t) and abatement x(t). Nor-

malizing the income rate to unity, c is restricted to the interval [0, 1]. Abate-

ment activities, x = 1 − c ∈ [0, 1], reduce emissions via the emission function

E(·) given by

E(x) ≡ α− (α− β)x, α > β ≥ 0, (4.1)

such that the pollution dynamics take the form

Ẋ = g(X, c) = E(1− c)− δX, (4.2)

where δ is a natural pollution decay parameter. The constants α and β rep-

resent maximal (no abatement) and minimal (all income is allocated to abate-

ment) emissions, yielding X̄ = α/δ, X = β/δ and X ∈ [X, X̄]. The tradeoffs

between consumption and pollution are manifest in (4.2): consumption comes

at the expense of abatement, increasing emissions and the associated pollution

stock.

The instantaneous utility takes the iso-elastic form

u(X, c) = u(c) ≡ c1−η − c1−η
min

1− η
, η > 0, (4.3)
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where cmin > 0 is a given small constant (see below). Note that the pollution

stock X does not enter directly in the utility function. In this example the

detrimental role of pollution is introduced only via its effect on the occurrence

probability. In particular, the hazard rate function is assumed linear in the

stock,

h(X) = bX, (4.4)

so that h′(X) = b > 0. By keeping a clean environment (X = 0), the

occurrence risk can be avoided altogether.

Using (4.1)-(4.2), the steady state policy M(X) = 1−E−1(δX) specializes

to

M(X) =
δX − β

α− β
=
X −X

X̄ −X
, (4.5)

hence M(X) = 0 and M(X̄) = 1.

4.1 Single occurrence events

We consider two types of single-occurrence events. Both entail an im-

mediate penalty ψ upon occurrence. Events of the first type damage the

environment irreversibly to the extent that the post-event income flow (t > T )

reduces to the small trickle cmin which must be allocated entirely for essential

consumption.4 Such consequences might follow when the event destroys some

major factor of production that cannot be restored. Single-occurrence events

of the second type inflict a penalty ψ upon occurrence and in addition initiate

a regulation that restricts the pollution level not to exceed X(T ) anytime in

the future.5

4Note that the utility (4.3) is normalized such that u(cmin) = 0.
5Such a regulation might come as a political response to appease public outrage associated

with the occurrence.
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Using the superscripts so1 and so2 to denote the first and second types of

single occurrence events, the corresponding post-event values are

φso1(X) =

∫ ∞

0

u(cmin)e
−ρtdt− ψ = −ψ (4.6)

and

φso2(X) =

∫ ∞

0

u(M(X))e−ρtdt− ψ = u(M(X))/ρ− ψ, (4.7)

where u(·) and M(·) are specified in (4.3) and (4.5), respectively. These

post-event values can be used to derive the corresponding functions Lj(X),

j = so1, so2. Setting the utility parameters (cmin and η), the discount rate

(ρ), the emission parameters (α and β), the pollution decay rate (δ) and hazard

sensitivity (b) equal to the values given in Table 1, leaves the penalty ψ as the

only free parameter for the numerical experiments below.

Table 1: Parameter values.

Parameter Value

cmin 0.05
ρ 0.03
η 2
α 0.5
β 0.01
δ 0.025
b 0.01

Using these specifications, the L-function for so1 events becomes

Lso1(X) =
X̄ −X

δ(X −X)2

[
ρ+ δ + bX +

bδ(X −X)

ρ+ bX

]
− ρb[ψ + 1/(ρcmin)]

ρ+ bX
.

(4.8)

The first term is positive and diverges at X = X. Thus, L(·) is positive

near the lower bound, which is excluded, therefore, from the list of candidate
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steady states (Property 3). The second term comes with a minus sign, so that

L vanishes when these two terms cancel out. Note that the penalty ψ appears

in the second term in combination with (−c1−η
min/(1−η))/ρ = 1/(ρ cmin), that is,

with the present value associated with the constant term of the utility function.

This can be understood by noting that, over and above the one-time penalty

ψ, so1 events inflict a cost in the form of reduction in consumption to the

subsistence level cmin . Indeed, even when ψ = 0, the value of cmin (5% of

income – see Table 1) is sufficiently small (hence the latter cost is high) to

ensure that the second (negative) term of Lso1 dominates the first (positive)

term at X = X̄, hence L(X̄) < 0. Thus, Lso1 must have a root in (X, X̄) and

some abatement activities should take place for all ψ ≥ 0 (see lower panel of

Fig. 2).

As the penalty ψ increases, the second (negative) term of (4.8) increases

(in absolute value) decreasing Lso1(·) and pushing its root to lower X values,

in accordance with the extra precaution called for by the increase in damage

(see Fig. 2). Note also that the coefficient of ψ in the second term of Lso1 can

be written as h′(X)ρ/[ρ+ h(X)], indicating the tradeoffs between the hazard

endogeneity h′(·), which acts to reduce emissions, and the hazard inclusive

discount rate ρ+h(·), representing impatience and acting to increase pollution.

In particular, an exogenous (constant) hazard, with h′(·) = 0, eliminates the

penalty term and pushes the steady state to X̄ no matter how large the hazard

and penalty are. It is the option to decrease the hazard, rather than the hazard

value per se, that drives the abatement policy.

These considerations are illustrated in Figure 2, where the upper panel de-

picts Lso1(X) for various values of ψ. One notes that although the function is

not monotonic, it possesses a unique root (where L decreases), which identifies

14
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Figure 2: Upper panel: Lso1(X) for various ψ values. Lower panel: Optimal steady state
X̂ as a function of the penalty ψ for so1 events.

uniquely the optimal steady state (Property 5) for each ψ value. The lower

panel displays the ensuing optimal steady states X̂ as a function of ψ. The

effect of the penalty on decreasing the steady state pollution is evident.

Single occurrence events of the second type add the term u(M(X))/ρ to

the post event value (see equation (4.7)). Except for exceedingly small stocks

(where M(X) < cmin) this term is positive hence the event is not as damaging

as those of the first type. Adding the contribution of this term gives

Lso2(X) = Lso1(X) +
h′(X)u(M(X))

ρ+ h(X)
+
h(X)u′(M(X))M ′(X)

ρ

hence Lso2(X) > Lso1(X) for all X such that M(X) > cmin, which implies
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higher steady state values under this type of events. Indeed, one finds

Lso2(X) =
X̄ −X

δ(X −X)2
(ρ+ δ)(ρ+ bX)

ρ
− ρbψ

ρ+ bX
. (4.9)

Ψ = 200

Ψ = 659.75Ψ = 1000

Ψ = 2000
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X
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4

6
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Ψ = 659.75

500 1000 1500 2000
Ψ

5
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X
`

Figure 3: Upper panel: Lso2(X) for various ψ values. Lower panel: Optimal steady state
X̂ as a function of the penalty ψ for so2 events.

The first term of (4.9) is again positive and tends to infinity at the lower

bound X. One notes that the penalty in the second term is not accompanied

by 1/(ρcmin), as was the case for so1 events. This is so because the post-

occurrence restriction to the essential consumption rate cmin is not imposed

here. As a result, the term vanishes for ψ = 0 and is small for small penalties.

This implies that Lso2(·) does not have a feasible root with small penalties,

16



and the corner state X̄ is the unique steady state in these cases (Property 5).

The intuition here is that when the damage is small, abatement expenses are

not justified. The penalty coefficient h′(X)ρ/[ρ+ h(X)] in front of ψ remains

as for the so1 events, demonstrating that the tradeoffs discussed above hold

also for this type of events.

Examples of Lso2(·) functions are displayed in the upper panel of Figure 3,

where they take only positive values over the feasible domain [X, X̄] = [0.4, 20]

for all ψ < 659.75, implying that no abatement is desirable at the steady state

(i.e., X̂ = X̄ = 20). For larger penalties, Lso2(·) admits a unique, stable root

X̂ ∈ [X, X̄] which defines the optimal steady state. Again, the root decreases

with ψ, as shown in the lower panel of Figure 3.

4.2 Recurrent events

Recurrent events also inflict a damage ψ upon occurrence but the problem

continues under the same risk of more events occurring later on. The post-

event value, thus, is given by

φ(X) = v(X)− ψ, (4.10)

where v(X) is the value function, defined by

v(X) = max
c(t)

∫ ∞

0

[u(c(t)) + h(X(t))φ(X(t))] exp

(
−
∫ t

0

[ρ+ h(X(s))]ds

)
dt

subject to (2.1), givenX(0) = X and c(t) ∈ [0, 1]. Since φ(·) of (4.10) contains

v(·) and at the same time appears in the objective defining it, both functions

are only implicitly defined. Nevertheless, the corresponding L−function can

be obtained and used to characterize optimal steady state candidates in much

the same way as in the previous, single-occurrence events.
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According to (3.3), W (X) ≤ v(X), equality holding at an optimal steady

state. It follows that at such a state both v(X) = W (X) and v ′(X) = W ′(X)

must hold. Thus, we can use (4.10) and express W (·) at an optimal steady

state as

W (X) =
u(M(X)) + h(X)[W (X)− ψ]

ρ+ h(X)
.

Solving for W (X) yields

W (X) = [u(M(X))− h(X)ψ]/ρ.

The first term u(M(X))/ρ is the steady state value without catastrophic risk

(the relevant discount rate is the riskless rate ρ because, in this recurrent event

example, occurrence does not interrupt the utility flow).

The second term measures the expected damage from an infinite series

of Poisson inflicted penalties, when each penalty is discounted at the factor

corresponding to the respective random occurrence time. Thus,

W ′(X) = [u′(M(X))M ′(X)− h′(X)ψ]/ρ ,

which gives, upon substituting (4.3)-(4.5) in (3.4a),

Lre(X) =
X̄ −X

δ(X −X)2
(ρ+ δ)(ρ+ bX)

ρ
− (ρ+ bX)bψ

ρ
. (4.11)

Comparing with (4.9) we see that the positive term remains unchanged,

while the negative penalty term is multiplied by the factor [(ρ+h(X))/ρ]2 > 1

hence Lre(X) falls short of Lso2(X) and its respective root is obtained at a

lower value of X. Recurrent events imply more prudence than their so2

counterparts. In fact, (4.11) can be recast in the form

Lre(X) =
ρ+ h(X)

ρ

[
X̄ −X

δ(X −X)2
(ρ+ δ)− h′(X)ψ

]
.
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The coefficient (ρ + h(X))/ρ serves merely as a normalization factor that

cannot modify the roots of Lre(·) which are determined by the expression in

the square brackets. Thus, the tradeoffs depend on the hazard endogeneity

h′(·), but not on h(·) per se. As explained above, the hazard-inclusive discount

rate is not the relevant rate for recurrent events, hence the incentive it provides

to increase emissions does not apply in this case.
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Figure 4: Upper panel: Lre(X) for various ψ values. Lower panel: Optimal steady state
X̂ as a function of the penalty ψ for recurrent events.

Figure 4 presents Lre(X) for different values of ψ (upper panel) and the

optimal steady state as a function of ψ (lower panel). For small penalties

(ψ < 11.2) Lre(X) > 0 for all X ∈ [X, X̄], implying that X̂ = X̄ = 20
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(Property 3). For ψ ≥ 11.2, Lre(X) admits a unique root X̂ ∈ [X, X̄],

where L′(X̂) < 0, and this root is the unique optimal steady state (Property

5). Again, the root of L(·) decreases with ψ, as the lower panel of Figure 4

reveals.

4.3 The three events compared

Recurrent

so2

so1
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Figure 5: Optimal steady states for the three event types vs. the penalty ψ.

Figure 5 compares the optimal steady states for the three types of events.

It shows that the response to catastrophic threats, in terms of abatements

efforts to reduce the associated hazard, varies considerably across the three

event types. Evaluated at the same one-off occurrence penalty ψ, so2 and

recurrent events are similar in that both leave no room for abatement when the

penalty is small. Otherwise, recurrent events are more harmful, and the long-

run pollution levels are smaller. so1 events incorporate another component

into the damage term, hence imply significant abatement even when ψ = 0.

The crossing of the so1 and recurrent curves shows how the relative weights

of the various tradeoff considerations change with ψ.
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5 Concluding comments

Situations where resource exploitation threatens to trigger abrupt catas-

trophic changes have become prevalent as more of our planetary resources

dwindle in quantity and/or quality due to prolonged exploitation over and

above their capacity to renew. In many examples, the catastrophic threats

enter the resource management problem via the hazard function with two con-

flicting effects. First, the hazard increases the discount rate thereby reduces

the importance of future utility and discourages conservation. Second, the

hazard endogeneity encourages conservation. The long-run overall effect can

be evaluated in terms of the steady states. It turns out that the details of

the specifications of the hazard and damage associated with the events are of

great importance. To study these effects, we characterize the steady states by

extending the L-method of Tsur and Zemel (2001, 2014b) to non-autonomous

models involving catastrophic threats.

The L-method is implemented by means of a simple function of the re-

source state, denoted L(·) and specified in terms of the model’s primitives,

such that an internal optimal steady state must be a root where L crosses

zero from above. If only one such root exists, this root is the unique opti-

mal steady state. When multiple roots exist, the one corresponding to the

optimal steady state may depend on the initial state. The overall effect of a

catastrophic threat is then identified by investigating how the details of the

event specifications modify the appropriate roots of L. Examples of three

prototypical events illustrate the application of the L-method and illuminate

the tradeoffs discussed above.
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Appendix: Proofs
The proofs in this Appendix extend the arguments of Tsur and Zemel

(2014b) to non-autonomous problems involving catastrophic threats.

A Proof of Property 3

Proof. For any feasible state X we compare the value W (X) obtained by the

policy c = M(X) with the value obtained from a small feasible variation of

this policy. If the value under the variation policy exceeds W (X), then X

does not qualify as an optimal steady state.

For arbitrarily small constants ϵ > 0 and δ, consider the variation policy

cϵδ(t) =

{
M(X) + δ/gc(X,M(X)) if t < ϵ

M(X(ϵ)) if t ≥ ϵ
.

For the short period t < ϵ, this policy deviates slightly from the constant state

policy, then it enters a steady state at X(ϵ). During the initial period t < ϵ,

Ẋ = g (X(t),M(X) + δ/gc(X,M(X))) = δ + o(δ),6 hence

X(ϵ)−X = ϵδ + o(ϵδ).

Let Γ(t) ≡
∫ t

0
[ρ+ h(X(s))]ds and gc = gc(X,M(X)). The contribution of

cϵδ to the objective during t ∈ [0, ϵ) is evaluated as∫ ϵ

0

U (X(t),M(X) + δ/gc) e
−Γ(t)dt =

∫ ϵ

0

U (X(t),M(X) + δ/gc) e
−[ρ+h(X)]tdt+∫ ϵ

0

U (X(t),M(X) + δ/g2)
[
e−Γ(t) − e−(ρ+h(X))t

]
dt ,

The first integral in the right can be expressed, recalling (3.3), as∫ ϵ

0

U(X,M(X))e−[ρ+h(X)]tdt+
Uc(X,M(X))

gc(X,M(X))
ϵδ + o(ϵδ) =

W (X)
[
1− e−[ρ+h(X)]ϵ

]
+
Uc(X,M(X))

gc(X,M(X))
ϵδ + o(ϵδ),

6The notation o(x) denotes small terms such that o(x)/x→ 0 when x→ 0
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and the second integral is o(ϵδ).

The contribution of cϵδ during the infinite period t ≥ ϵ is∫ ∞

ϵ

U(X(ϵ),M(X(ϵ)))e−[ρ+h(X(ϵ))]tdt =

∫ ∞

ϵ

[ρ+h(X(ϵ))]W (X(ϵ))e−[ρ+h(X(ϵ))]tdt =∫ ∞

ϵ

[ρ+h(X(ϵ))]W (X)e−[ρ+h(X(ϵ))]tdt+

∫ ∞

ϵ

[ρ+h(X(ϵ))]W ′(X)ϵδe−[ρ+h(X(ϵ))]tdt+o(ϵδ).

The first integral on the second line can be expressed as

W (X)

∫ ∞

ϵ

[ρ+h(X(ϵ))]e−[ρ+h(X(ϵ))]tdt =W (X)e−[ρ+h(X(ϵ))]ϵ = W (X)e−[ρ+h(X)]ϵ+o(ϵδ)

and the second integral is approximated by W ′(X)ϵδ + o(ϵδ).

Summing the contributions of both periods gives

vϵδ(X) = W (X) +

(
Uc(X,M(X))

gc(X,M(X))
+W ′(X)

)
ϵδ + o(ϵδ),

or

vϵδ(X)−W (X) = L(X)ϵδ/[ρ+ h(X)] + o(ϵδ) (A.1)

where L(X) is defined in (3.4a).

While ϵ > 0, the sign of δ can be freely chosen. Thus, if L(X) ̸= 0 we

can set sign(δ) = sign(L(X)) to ensure that vϵδ(X) > W (X) hence X is not

an optimal steady state. It follows that only the roots of L(·) qualify as

candidates for optimal steady states. The only exceptions are the bounds X

and X̄. Choosing δ > 0 is not feasible at X̄ because this policy would lead

the process outside the feasible domain. Therefore, X̄ cannot be excluded as

an optimal steady state if L(X̄) > 0. A similar argument holds for the lower

bound X if L(X) < 0.

B Proof of Property 4

Proof. Consider S(t) = exp
(
−
∫ t

0
h(X(s))ds

)
as a second state variable and

let λ and µ denote the current-value co-states corresponding to X(·) and S(·),
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respectively. The current-value Hamiltonian corresponding to the problem of

maximizing the objective (2.4) subject to the dynamic constraint (2.1) is

H = U(X, c)S + λg(X, c)− µh(X)S. (B.1)

The necessary conditions for (an interior) optimum include:

Uc(X, c)S + λgc(X, c) = 0, (B.2)

λ̇− ρλ = −[UX(X, c)S + λgX(X, c)] + µh′(X)S. (B.3)

and

µ̇− ρµ = −U(X, c) + µh(X). (B.4)

The last equation is integrated from t to ∞, yielding

µ(t) = v(X(t)),

where v(X) is the value obtained for the maximal objective when the initial

stock is X. Denoting the normalized shadow price by

Λ ≡ λ/S,

the necessary conditions take the form

Uc(X, c) + Λgc(X, c) = 0, (B.5)

Λ̇ = [gX(X, c)−(ρ+h(X))]
Uc(X, c)

gc(X, c)
−UX(X, c)+h

′(X)v(X) ≡ ζ(X, c). (B.6)

At an optimal interior steady state X̂, where c = M(X̂) and v(X̂) = W (X̂),

we find

ζ(X̂,M(X̂)) = −L(X̂) = 0, (B.7)

which agrees with Λ(·) being stationary at the steady state.
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Next, we express the optimal control c as a function of the state variable

X, say c(t) = C(X(t))7 where

C(X̂) =M(X̂). (B.8)

Define the functions

A(X) = gc(X,C(X))Ucc(X,C(X))− Uc(X,C(X))gcc(X,C(X)), (B.9)

B(X) = gc(X,C(X))UcX(X,C(X))− Uc(X,C(X))gcX(X,C(X)). (B.10)

According to assumption (2.2), the expression A(X)/gc(X,C(X)) is strictly

negative, which ensures that H is concave in c. Taking the time derivative of

(B.5) and using (B.6) to eliminate Λ̇, we find

C ′(X)
A(X)

g2c (X,C(X))
+

B(X)

g2c (X,C(X))
+
ζ(X,C(X))

g(X,C(X))
= 0. (B.11)

Equation (B.11) is a first order differential equation, which together with

(B.8) defines C(X) for all X in the relevant neighborhood. Indeed, for

X ̸= X̂ the coefficient of C ′(X) is non vanishing while the other two terms

of (B.11) are finite, hence the derivative C ′(X) is well defined. A diffi-

culty with its evaluation at X̂ arises because the function g(·, ·), appearing

at the denominator of the last term, vanishes at X̂. However, in an un-

constrained steady state, L(X̂) = 0 and the singularity is removed because

ζ(X̂, C(X̂)) = ζ(X̂,M(X̂)) = −L(X̂) = 0 (cf. (B.7)) This term, then, can

be evaluated using l’Hôpital’s rule. Using (B.7), we find

dζ(X̂, C(X̂))

dX
= −L′(X̂) + ζc(X̂, C(X̂))[C ′(X̂)−M ′(X̂)],

7For the existence and continuity of C(·) near the steady state, see Tsur and Zemel
(2014b).

25



while (3.2) implies

dg(X,C(X))

dX
= gX(X,C(X))+gc(X,C(X))C ′(X) = gc(X,C(X))[C ′(X)−M ′(X)].

It follows that

lim
X→X̂

{
ζ(X,C(X))

g(X,C(X))

}
=

1

gc(X̂, C(X̂))

(
−L′(X̂)

C ′(X̂)−M ′(X̂)
+ ζc(X̂, C(X̂))

)
.

The last term on the right and side is obtained by taking the derivative of

(B.6) with respect to c,

ζc(X,C(X)) = −A(X)
ρ+ h(X)− gX(X,C(X))

g2c (X,C(X))
− B(X)

gc(X,C(X))
,

which, using (3.2), reduces (B.11) in the limit X → X̂ to

A(X̂)

gc(X̂, C(X̂))

(
C ′(X̂)−M ′(X̂)− ρ+ h(X)

gc(X̂, C(X̂))

)
+

−L′(X̂)

C ′(X̂)−M ′(X̂)
= 0.

Denoting

∆(X) ≡ C ′(X)−M ′(X), (B.12)

we obtain the quadratic equation

∆2(X̂)− ρ+ h(X)

gc(X̂, C(X̂))
∆(X̂)− gc(X̂, C(X̂))L′(X̂)

A(X̂)
= 0. (B.13)

To determine which of the solutions of (B.13) corresponds to the stable

steady-state slope-difference ∆(X̂), observe that the state X̂ is attractive

only if gc(X̂, C(X̂))∆(X̂) ≤ 0. To see this, consider a state just below

the steady state, say Xε = X̂ − ε. To approach X̂ from below requires

Ẋ = g(Xε, C(Xε)) > 0. Recalling that g(Xε,M(Xε)) = 0, this implies

gc[C(Xε) −M(Xε)] > 0, while gc[C(X̂) −M(X̂)] = 0. Recalling that gc is

bounded away from 0, we confirm that gc∆(X̂) ≤ 0.
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Next, we write the solutions of (B.13) as

gc(X̂, C(X̂))∆(X̂) =
ρ+ h(X)

2

(
1±

√
1 +

4L′(X̂)g3c (X̂, C(X̂))

[ρ+ h(X)]2A(X̂)

)
. (B.14)

Since A(X̂)/g3c < 0, the argument of the square-root operator above does

not fall short of unity only if L′(X̂) ≤ 0. In this case, we have one non-

positive solution for gc∆(X̂) which can provide the boundary value C ′(X̂) =

M ′(X̂)+∆(X̂) for the differential equation (B.11). In contrast, if L′(X̂) > 0,

the argument falls short of unity and the two solutions in (B.14) are either

positive or complex, hence (B.11) does not yield a solution that converges to

X̂. This rules out the possibility that L′(X̂) > 0 at a stable steady state,

verifying Property 4.
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