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Abstract

When a nonpoint source pollution process involves many polluters,

each taking the aggregate pollution process parametrically, regulation

policies based on strategic interaction of dischargers become ine�ective.

We o�er a regulation mechanism for this case. The mechanism consists

of inter-period and intra-period components. The �rst exploits ambi-

ent (aggregate) information to derive the optimal pollution process and

the ensuing social price of emission. The intra-period mechanism im-

plements the optimal output-abatement-emission allocation across the

heterogenous, privately informed �rms in each time period. The intra-

period mechanism gives rise to the full information outcome when the

social cost of transfers is nil. A positive social cost of transfers decreases

both output and abatement in each time period, though the e�ect on

emission is ambiguous.
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1 Introduction

Regulating nonpoint source pollution is complicated because of the inabil-

ity to use individual e�uent charges or quotas, and the bulk of the literature in

this vein, following Segerson (1988), relies in one way or another on observed

aggregate (ambient) indicators. The e�cacy of ambient-based policies in at-

taining a desirable goal is based on their ability to exploit strategic interactions

between individual dischargers. When the number of polluters is large enough

to the extent that participants assume that their own contributions to aggre-

gate pollution accumulation are negligible, strategic interactions vanish and

ambient based policies become ine�ective. This situation is common when

emissions emanate from agricultural producers or in global pollution processes

such as emissions of greenhouse gases (GHG).1

Aggregate emission is a byproduct of production and contributes to a pollu-

tion stock that in�icts damage. Emission can be reduced by costly abatement

e�orts. The pro�t-seeking �rms operate in competitive spot markets, taking

prices and the stock of pollution parametrically in each period of time. In

particular, each �rm assumes that its own contribution to aggregate emission,

as well as its impact on other �rms' decisions, is negligible. When individual

emissions are observed, the problem reduces to that of regulating a stock ex-

ternality, on which quite a bit is known (see, among others, Newell and Pizer

2003). The problem of regulating unobserved individual emissions when �rms

are privately informed with regard to their production e�ciency and abate-

ment e�orts is considerably more involved; the dynamic regulation mechanism

1Agriculture and other land use sectors are major contributors to global GHG (Stern
2007, pp. 196-197) and typically consist of many, dispersed, heterogeneous producers. These
are likely candidates for the nonpoint source pollution situation considered here.
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developed here addresses this problem.

Like its static counterpart, the literature on dynamic regulation of non-

point source pollution, initiated with Xepapadeas (1992), predominantly relies

on ambient based policies applied to a group of strategically interacting pol-

luters. Of main concern in this literature are properties of the assortment of

equilibria obtained under di�erent decision rules (of polluters) and contractual

arrangements (between the regulator and the group of polluters), and ranking

welfare outcomes vis-à-vis some social objective reference. Recent contribu-

tions along this line include Karp (2005) and Athanassoglou (2010).2 This

approach is of limited use in the present situation, where strategic interactions

between polluters are absent.

The approach taken here is more closely related to the literature on re-

peated moral hazard, where a principal regulates many privately informed

agents over time by contracting each agent separately. The dynamic nature

of the principal-agent interactions induces strategic behavior on both parties

and raises a host of contract issues, including the feasibility of implementing

the optimal outcome via a series of spot contracts (see Chiappori et al. 1994).

The principal-agent regulation mode has been used in a wide variety of market

failure situations, including dynamic taxation of privately informed agents (see

Kocherlakota 2005, and references therein). Here it is applied in the context of

regulating a dynamic nonpoint source pollution process, where agents (�rms)

are privately informed with regard to their individual production e�ciency

and abatement e�orts.

As in the dynamic taxation literature (Kocherlakota 2005), we distinguish

2A related line of literature deals with dynamic regulation of strategically interacting
polluters when individual actions are observed (see Benchekroun and Long 1998, Wirl 2007,
Harstad 2012, and references therein).
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between two types of random shocks: aggregate and �rm-speci�c (or idiosyn-

cratic). The aggregate shocks a�ect the (ambient) pollution accumulation

process due, e.g., to weather conditions such as wind, temperature and precip-

itation. The idiosyncratic shocks a�ect the performance (e�ciency) of each

�rm in each period, due, e.g., to personnel change or new knowledge. The

aggregate shocks are publicly observed; the idiosyncratic shocks are privately

observed (by each �rm) but publicly revealed via �rms' observable outputs

in each time period. Both production and abatement activities require no

capital stocks, hence �rms maximize pro�ts in each time period. The only

stock process in the model is that of pollution � the public bad.

The proposed mechanism addresses this situation by combining (i) an inter-

temporal model that uses aggregate observations and available �rms' informa-

tion, and (ii) an intra-temporal mechanism based on a series of spot contracts

between the regulator and each �rm. These two components evolve together

in time and interact with each other. The inter-temporal model receives from

the intra-period mechanism the information needed to update the asymmetric

information regarding �rm's types (production e�ciency) and determines the

optimal stock of pollution, aggregate emission and the ensuing social price of

emission. The latter varies over time with the pollution stock but is constant

within a period, hence is independent of the intra-period emission �ow.

Given the social price of emission, the intra-period mechanism implements

the optimal output-abatement-emission allocation across the heterogenous,

privately informed �rms via spot contracts between the regulator and each

�rm. These contracts are based on (observable) outputs and exploit the

property that the social price of emission, while changing over time with the

stock of pollution, is constant within a time period and is thus independent
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of the (intra-period) emission �ow. The implemented allocation is shown to

be �rst-best (i.e., the same as that without asymmetric information) when the

social cost of transfers is nil. When transfers entail social costs, �rms' pri-

vate information entails a rent and both outputs and abatements are smaller,

though the e�ect on emission is ambiguous.

As noted above, the only stock in our model is that of pollution � the

public bad. There are no private (�rm level) capital stocks (e.g., abatement

capital), hence �rms are not forward looking. As a result, contracts can be

speci�ed for one period at a time (the intertemporal e�ect due to the pollution

stock is incorporated via the social price of emission, obtained from the inter-

period model). This property allows us to avoid a host of issues frequently

encountered in dynamic contracts, such as hold-up problems, the feasibility

of commitments and e�ects of renegotiation (see discussion in Harstad 2012).

The lack of abatement capital is a simpli�cation, but one that holds in many

real world situations, including emission from agricultural production where

abatement entails the use of biological methods (e.g., natural enemies) instead

of chemicals or tillage practices that reduce CO2 release. The payo� is a

sharper focus on the regulation of hidden individual actions (moral hazard)

under asymmetric information (adverse selection) in a dynamic context.

The next section lays out the model's structure and assumptions. Sections

3 and 4 present, respectively, the inter-temporal and intra-temporal compo-

nents of the mechanism and derive its desirable properties. Section 5 concludes

and the appendix contains proofs.
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2 Setup

Emission is generated by a large number (n) of �rms as a byproduct of

production and contributes to a pollution stock. The environmental damage

is caused by the pollution stock. The �rms operate in a competitive envi-

ronment, maximizing pro�t in each time period while taking prices and the

pollution stock parametrically. Emission a�ects environmental cost indirectly

through its contribution to the stock of pollution. Firms' output-emission re-

lation and costs of production and abatement are speci�ed in Section 2.1. The

observation-information structure is described in Section 2.2. The pollution-

emission process is formulated in Section 2.3 and welfare is de�ned in 2.4. The

regulation task is outlined in Section 2.5.

2.1 Firms: output, abatement and emission

Firm i's pro�t at time period t is p(t)yi(t)− Ci(yi(t), βi(t))− ai(t), where

p(t) is output price, taken parametrically by the �rm, yi(t) is output, Ci(·, ·) is

the production cost function, βi(t) ∈ [0, β̄i(t)] represents the �rm's e�ciency,

referred to as type (the zero lower bound is assumed for convenience), and ai(t)

is the abatement cost (e�ort). The �rm's type βi(t) changes over time due

to exogenous, �rm-speci�c shocks (change of management, new information).

The �rm's subscript i and time argument t are suppressed when the discussion

pertains to a particular (any) �rm at a particular time period.

The cost function C(·, ·) is increasing and convex in output: C1(y, β) ≡

∂C(y, β)/∂y > 0 and C11(y, β) ≡ ∂2C(y, β)/∂y2 > 0. Since a higher β means

a more e�cient �rm, both C(y, β) and C1(y, β) decrease with β. Additional

cost properties (including third derivatives) will be used. We summarize the
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properties of C (for all �rms i at all time periods t = 1, 2, ...) in:

C1 > 0, C2 < 0, C11 > 0, C12 < 0, C111 ≥ 0, C112 ≤ 0, C122 ≥ 0 (2.1)

for all y > 0 and β ∈ [0, β̄], where subscripts 1 and 2 signify partial deriva-

tives with respect to the �rst and second argument, respectively (e.g., C12 ≡

∂2C/∂y∂β).

Emission is an unintended consequence (a byproduct) of production and

depends, in addition to output, on abatement e�orts (cost) ai(t) according to

ei(t) = Gi(ai(t))yi(t), (2.2)

where Gi(·) is emission per unit output, representing abatement technology.

The functions G(·) decrease at a diminishing rate with a nonnegative third

derivative:

G ′(a) < 0, G ′′(a) > 0, G ′′′(a) ≥ 0, ∀ a ∈ [0,∞), (2.3)

for all �rms i (as above, the �rm's subscript i and time argument t are sup-

pressed when appropriate).

Firm i's output-abatement allocation in period t is denoted gi(t) = (yi(t), ai(t)) ∈

IR2
+ and g(t) = (g1(t), g2(t), ..., gn(t)) ∈ IR2n

+ represents output-abatement al-

location of all �rms. Aggregate emission at time period t equals

E(g(t)) =
∑
i

ei(t) =
∑
i

Gi(ai(t))yi(t). (2.4)

2.2 Observations and information

Outputs yi(t) are observed in each time period, but neither abatement

ai(t) nor emissions ei(t) are observed (by the regulator and by other �rms).
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Moreover, at the beginning of time period t, βi(t) is �rm i's private informa-

tion and is known to the regulator (and to other �rms) up to a probability

distribution: from the viewpoint of the regulator, the βi(t)'s are indepen-

dent random variates with distributions Fit : [0, β̄i(t)] 7→ [0, 1] and densities

fit(·) = F ′
it(·), i = 1, 2, ..., n, t = 1, 2.... We assume that, for all �rms at

all time periods, fit(b) > 0 for all b ∈ [0, β̄i(t)] and the hazard functions

hit(b) = fit(b)/[1− Fit(b)] are nondecreasing.

The βi(t)'s change over time as a result of idiosyncratic (�rm-speci�c)

shocks (due, e.g., to personnel change or new information) and is �rm i's

private information at the beginning of period t. At the end of period t, the

observed output yi(t) identi�es βi(t) via the pro�t maximization conditions

induce by the mechanism rules (details are provided in Section 4). At the

beginning of period t, the distribution of β(t), Fit(·), depends on βi(t− 1) but

not on information before t− 1 (i.e., from the viewpoint of the regulator, βi(t)

is a Markov chain). At the initial period, all �rm types posses well-de�ned

prior distributions. Let mi(t) = mi(βi(t − 1)) denote the moments charac-

terizing Fit and let M(t) = (m1(t),m2(t), ...,mn(t)), t = 1, 2, ..., where M(1),

characterizing the initial type distributions, is given.

Given M(t), the regulator can calculate the average (with respect to the

βi's) cost functions

C̄it(y) =

ˆ β̄i(t)

0

Ci(y, b)fit(b)db, i = 1, 2, ..., n, (2.5)

at the beginning of time period t = 1, 2, ....
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2.3 Pollution

Aggregate emission E(g(t)) contributes to a pollution stock Q(t) according

to

Q(t+ 1) = R(Q(t), E(g(t)), Z(t+ 1)), t = 1, 2, ... (2.6)

where Z(t), t = 2, 3, ... are aggregate random terms representing stochastic

e�ects such as wind, humidity, temperature and precipitation. An example

of a pollution accumulation process is

R(Q,E,Z) = Q+ [E − δQ]Z, (2.7)

where δ ∈ [0, 1) is a parameter representing pollution decay and Z a unit-

mean, nonnegative random variable. The support of Z may be discrete or

continuous and the process Z(t) is a Markov chain (i.e., the distribution of Z(t)

conditional on {Z(t−1), Z(t−2), ...} is the same as its distribution conditional

on Z(t− 1)).

The pollution stock Q(t) in�icts the damage D(Q(t)) at time period t,

where D : IR+ 7→ IR+ is increasing and convex: D′(·) > 0, D′′(·) ≥ 0.

The pollution stock Q(t) and the realization Z(t) are observed at the be-

ginning of period t. The functions E(·), R(·, ·, ·) and D(·) are known (the

former, de�ned in (2.4), depends on the known abatement functions Gi(·)).

2.4 Welfare

Period t's bene�t equals3

∑
i

[pyi(t)− Ci(yi(t), βi(t))− ai(t)]−D(Q(t)).

3To simplify we assume a constant output price p(t) = p. The analysis extends to cases
where output price depends on aggregate output or �uctuates around a mean that depends
on aggregate output or when p(t) is a Markov chain.
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The expected bene�t given the information available at the beginning of period

t, i.e., given M(t) characterizing Fit, i = 1, 2, ..., n, is

B(Q(t), g(t)) =
∑
i

[
pyi(t)− C̄it(yi(t))− ai(t)

]
−D(Q(t)), (2.8)

Given Q(1) andM(1), a production-abatement plan {g(t) ∈ IR2n
+ , t = 1, 2, ...}

generates the (random) bene�t �ow B(Q(t), g(t)), t = 1, 2, ... with the corre-

sponding (random) present value

∞∑
t=1

θt−1B(Q(t), g(t)),

where θ ∈ (0, 1) is the running (single period) discount factor. The present

value is random due to the stochastic pollution process, de�ned in equation

(2.6), and the stochastic evolution of �rm types . Welfare is de�ned as the

expected present value conditional on available information.

2.5 Regulation

The regulation mechanism consists of inter-period and intra-period models

that progress together in time: the inter-period model determines the optimal

pollution and aggregate emission processes; the intra-period mechanism im-

plements the optimal policy vis-à-vis the heterogenous and privately informed

�rms. The inter-period task is performed using aggregate pollution-emission

observations and �rm's type distributions, and gives rise to the shadow price

of pollution and the ensuing social price of emission.

The intra-period regulation is carried out by means of spot contracts de-

�ned in terms of observable output with each �rm at each time period. These

contracts implement the optimal output-abatement allocation corresponding

to the social price of emission (determined by the inter-period model). The
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latter varies over time with the stock of pollution but is constant within a

time period, independent of the aggregate emission �ow during the period.

The inter-period model is presented in the next section and the intra-period

contracts are analyzed in Section 4.

3 Optimal pollution process and the social price

of emission

We characterize the optimal pollution process and the ensuing social price

of emission from a social planner (regulator) viewpoint. The sequence of

events is as follows: (i) at the beginning of time period t, Q(t) and M(t) are

observed; (ii) the output-abatement action g(t) ∈ G ⊂ IR2n
+ is taken, giving rise

to E(g(t)) and B(Q(t), g(t)) (cf. equations (2.4) and (2.8)), where G ⊂ IR2n
+ is

the set of feasible output-abatement allocations; (iii) Z(t+ 1) is realized and

observed, giving rise to Q(t + 1); βi(t), ∀ i, is revealed by (observed) outputs

(see Section 4), giving rise to M(t + 1); (iv) the process advances to period

t+ 1 and so on.

The information available when the action g(t) is taken is

Ω(t) =
{
[Q(s), Z(s), g(s), β(s)]t−1

s=1, Q(t),M(t)
}
,

where it is recalled that g(s) identi�es E(g(s)) (cf. equation (2.4)). A period

t's decision rule, dt(·), de�nes the action to be taken at time t given the

available information: g(t) = dt(Ω(t)). A decision rule can be Randomized

or Deterministic. A policy is a list of decision rules for each time period:

{d1(·), d2(·), ...}. A decision rule is Markovian if it depends on the current

state only: g(t) = ψt(Q(t),M(t)), where ψt(·) denotes a Markovian decision

rule. A policy is Markovian if all its decision rules are Markovian and it
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is stationary if ψt(·) = ψ(·) for all time periods. A stationary-Markovian

policy is represented by ψ. We con�ne attention to Stationary-Markovian-

Deterministic (SMD) policies and denote by Φ the set of all feasible Markovian-

Deterministic decision rules (i.e, all ψ(·) such that ψ(Q,M) ∈ G ⊂ IR2n
+ for

all Q ∈ IR+ and feasible M vectors).4 To simplify the notation, we suppress

M as an argument (notice that the process M(t) is an exogenous process and

cannot be in�uenced by the regulator).

Given Q(1) = Q and M(1) =M , the expected present value generated by

an SMD policy ψ is

V ψ(Q) = Et
∞∑
t=1

θt−1B(Q(t), ψ(Q(t)), (3.1)

where Et represents expectation conditional on information available at the

beginning of period t. The optimal policy ψ∗ satis�es

V ∗(Q) ≡ V ψ∗
(Q) = sup

ψ∈Φ
V ψ(Q).

The value function V ∗(·) satis�es the optimality equation

V ∗(Q(t)) = max
g∈G

{B(Q(t), g) + θEtV ∗(R(Q(t), E(g), Z(t+ 1)))} (3.2)

and the optimal decision rule is de�ned by5

ψ∗(Q(t)) = argmaxg∈G {B(Q(t), g) + θEtV ∗(R(Q(t), E(g), Z(t+ 1)))} .

(3.3)

In (3.2)-(3.3), R(Q(t), E(g), Z(t+ 1)) stands for Q(t+ 1) (see equation (2.6))

and E(g) is de�ned in (2.4).

4Because Z(t) and β(t) are Markov chains and the evolution process R(·) (equation
(2.6)) and the single period reward B(Q(t), g(t)) (equation (2.8)) are autonomous, i.e., do
not depend explicitly on time, the optimal value can be attained by an SMD policy (see
Puterman 2005, Chapters 5-6).

5We assume that V ∗(Q) and ψ∗(Q) exist and are di�erentiable (see conditions in Ace-
moglu 2009, p. 553).
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Let the subscripts yi and ai denote partial derivatives with respect to the

corresponding elements of g, where it is recalled that gi = (yi, ai) and g =

(g1, g2, ..., gn). Necessary conditions for an interior optimum corresponding to

(3.2) include Byi(Q(t), ψ
∗(Q(t)))− τ(t)Eyi(ψ

∗(Q(t))) = 0 or

p− Ci1(y
∗
i (Q(t)), βi(t))− τ(t)Gi(a

∗
i (Q(t))) = 0, i = 1, 2, ..., n, (3.4a)

and Bai(Q(t), ψ
∗(Q(t)))− τ(t)Eai(ψ

∗(Q(t))) = 0 or

−1− τ(t)G ′
i(a

∗(Q(t)))y∗i (Q(t)) = 0, i = 1, 2, ..., n, (3.4b)

where

τ(t) ≡ τ(Q(t)) = − ∂

∂E
Et{θV ∗(R(Q(t), E(ψ∗(Q(t)), Z(t+ 1)))} =

−θEt{V ∗′(R(Q(t), E(ψ∗(Q(t))), Z(t+ 1)))RE(Q(t), E(ψ∗(Q(t))), Z(t+ 1))} (3.5)

In (3.5), V ∗′(Q) = ∂V ∗(Q)/∂Q is the shadow price of the pollution stock and

RE(Q,E,Z) = ∂R(Q,E,Z))/∂E. Thus, τ(t) is the social price of emission,

measuring the e�ect of a small (marginal) change in emission on the expected

next-period value discounted to the current period. In (3.4a) and (3.4b), the

�=� signs change to �≤� at the corners of y∗i (Q(t)) = 0 and a∗i (Q(t)) = 0,

respectively.

Equations (3.4) are the stochastic Euler equations corresponding to (3.2)

and together with an appropriate transversality condition can be used to solve

for the value and optimal decision rule functions V ∗(·) and ψ∗(·).6 The social

price of emission, τ(t), can thus be calculated at the beginning of time period

t, upon observing Q(t) and M(t).

6Puterman (2005) describes a host of algorithms for calculating these functions in actual
practice (see example in Leizarowitz and Tsur 2012).
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It is of interest to see the link between the social price of emission τ = τ(Q)

and the marginal damage of pollution D′(Q). Use (3.2)-(3.3) to write

V ∗(Q(t)) = Bt(Q(t), ψ
∗
t (Q(t))) + θEt{V ∗(R(Q(t), E(ψ∗

t (Q(t))), Z(t+ 1)))}

and di�erentiate with respect to Q(t), invoking (3.4) and (2.8), to obtain

(dropping the t and t+ 1 arguments for convenience)

V ∗′(Q) = −D′(Q) + θE{V ∗′(R(Q,E(ψ∗(Q)), Z))RQ(Q,E(ψ
∗(Q)), Z)}, (3.6)

where RQ is the partial derivative of R with respect to Q. Consider the R(·)

speci�ed in (2.7) with the Z's nonnegative, unit-mean, i.i.d. variates. Suppose

that the distribution of the optimal state process converges in the long run to

a steady-state (stationary) distribution (see conditions in Stokey et al. 1989,

Chapter 12). Let a double-bar over a variable indicate expectation under the

steady state distribution, so that in the long run ¯̄Q(t+ 1) = ¯̄Q(t) ≡ ¯̄Q, or

¯̄R(Q,E(ψ∗(Q)), Z) = ¯̄Q, implying (noting (2.7) and that Z = Z(t + 1) has a

unit mean and is independent of Q = Q(t)) that ¯̄E(ψ∗
t (Q)) − δ ¯̄Q = 0, i.e., in

the long run emission equals pollution decay on average.

Now, evaluate (3.6) at Q = ¯̄Q and expand R( ¯̄Q,E(ψ∗
t (

¯̄Q)), Z) around its

(long-run) mean ¯̄R = ¯̄Q (recalling that EZ = 1, so ERQ = 1− δ) to obtain

V ∗′( ¯̄Q) ≈ −D′( ¯̄Q) + θV ∗′( ¯̄Q)(1− δ),

which implies

−θV ∗′( ¯̄Q) ≈ 1

r + δ
D′( ¯̄Q),

where r is the interest rate corresponding to θ, i.e., θ = 1
1+r

. The above

relation, noting Equation (3.5) and recalling ERE = 1, implies that in the

long run τ(t) �uctuates around

1

r + δ
D′( ¯̄Q).
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When the stock of pollution does not depreciate, i.e., δ = 0, increasing

emission increase the pollution stock from now and forever. The additional

pollution in�icts a constant �ow of damage at the rate D′( ¯̄Q) per time period.

The price of emission is therefore the present value of the perpetual damage

�ow (at the time of emission) D′( ¯̄Q)/r. With pollution decay, δ > 0, the

present value is calculated based on the e�ective discount rate r + δ.

4 The intra-period mechanism

The goal is to implement the optimal output-abatement allocation g∗(t) =

ψ∗(Q(t)) across the n �rms, using the social price of emission τ(t) = τ(Q(t)).

If individual emissions were observed, an obvious way to proceed would have

been to impose the Pigouvian tax τ(t) on individual emissions, forcing each

�rm to internalize its external e�ect. Unfortunately, this is impossible when

individual emissions and abatements are unobserved and regulation thus re-

sorts to the use of transfers. Notice that this problem persists also when the

�rms types (the βi's) are common knowledge and it will prove useful to begin

with this case.

4.1 Firm types are common knowledge

At the beginning of period t, given the pollution stock Q(t) and the social

price of emission τ(t), the regulator seeks to implement the optimal output-

abatement allocation, ψ∗(Q(t)), across the n �rms. This requires inducing

�rms to internalize the environmental damage τ(t)ei(t) = τ(t)Gi(ai(t))yi(t)

they generate (recalling that neither ei(t) nor ai(t) are observed). To that

end, the regulator issues �rms transfers si, such that the post-transfer pro�t
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of �rm i is (the time argument is suppressed when appropriate)

πi = pyi − Ci(yi, βi)− ai + si, i = 1, 2, ..., n. (4.1)

The public cost associated with an output-abatement allocation (yi, ai), i =

1, 2, ..., n, consists of the cost of transfers plus the social cost of emission:∑
i

{si(1 + λ) + τGi(ai)yi} ,

where λ ∈ [0, λ̄] is the social cost of transfer (i.e., a transfer of one dollar gener-

ates a deadweight loss of λ due, e.g., to transactions costs or distortions) and λ̄

is a �nite upper bound. Subtracting the public cost
∑

i {si(1 + λ) + τGi(ai)yi}

from the sum of post-transfer pro�ts gives period t's bene�t∑
i

{pyi − Ci(yi, βi)− ai + si − τGi(ai)yi − (1 + λ)si}

which, using (4.1), can be rendered as∑
i

{(1 + λ)(pyi − Ci(yi, βi)− ai)− τGi(ai, βi)yi − λπi}. (4.2)

The optimal yi, ai and si (or πi) maximize (4.2) subject to the participation

constraints πi ≥ 0 and nonnegativity of yi and ai. The structure of (4.2)

implies that the maximization can be carried out for each �rm separately and

proceed in two steps: �rst, �rm i's output-abatement allocation (y∗i , a
∗
i ) that

maximize

Ji(yi, ai) = (1 + λ)[pyi − C(yi, βi)− ai]− τG(ai)yi (4.3)

is chosen; second, the optimal transfer is set under the participation constraint

πi ≥ 0. The necessary conditions corresponding to the maximization of (4.3)

are

p− Ci1(yi, βi) =
τGi(ai)

1 + λ
(4.4a)
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and

−G′
i(ai)yi =

1 + λ

τ
, (4.4b)

and the optimal transfer is set such that

πi = 0. (4.4c)

In (4.4a) and (4.4b), the �=� signs change to �≤� at the corners of yi = 0

and ai = 0, respectively. Notice that conditions (4.4a)-(4.4b) are the same as

conditions (3.4a)-(3.4b) when λ = 0 (zero social costs of transfers).

Following (4.4b), de�ne

qi(a) ≡
1 + λ

−G′
i(a)τ

. (4.5)

Substituting qi for yi in (4.4a) gives the condition

Ci1(qi(ai), βi) +
τ

1 + λ
Gi(ai) = p . (4.6)

Suppose

Ci11(qi(0), βi)q
′
i (0) +

τ

1 + λ
G′
i(0) > 0 (4.7)

for all βi ∈ [0, β̄i] and λ ∈ [0, λ̄]. Using (2.1), (2.3) and (4.5), it can be veri�ed

that (4.7) implies7

Ci11(q(a), βi)q
′
i(ai) +

τ

1 + λ
G′
i(ai) > 0 for all ai ≥ 0, (4.8)

i.e., the left-hand side of (4.6) is monotonic in ai. If, in addition, for any

βi ∈ [0, β̄i] and λ ∈ [0, λ̄], there exists some �nite āi (possibly very large) such

that

Ci1(qi(0), βi) +
τGi(0)

1 + λ
< p and Ci1(q(āi), βi) +

τGi(āi)

1 + λ
> p, (4.9)

7Use properties of C and G, noting, from (4.5) and (2.3), that q′(·) > 0 and q′′(·) > 0.
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then (4.6) admits a unique solution a∗i ∈ [0, āi]. In this case, (4.4a)-(4.4b)

admit a unique, positive solution (a∗i , y
∗
i ) with y∗i = qi(a

∗
i ). The associated

transfers are then de�ned, noting (4.1) and (4.4c), by s∗i = Ci(y
∗
i , βi)+a

∗
i−py∗i .

Su�ciency requires that Ji(·, ·), de�ned in (4.3), is concave at (y∗i , ai
∗),

which follows from:

Lemma 1. Given (2.1), (2.3) and (4.8), Ji(·, ·) is concave on the domain

yi ≥ qi(ai), (yi, ai) ∈ R2
+. (4.10)

The proof is given in Appendix A. Since (y∗, a∗) satis�es (4.10) (cf. (4.4b)

and (4.5)), it also satis�es the su�cient condition.

We conclude that the allocation g∗ = (g∗1, g
∗
2, ..., g

∗
n), where g

∗
i = (y∗i , a

∗
i ), i =

1, 2, ..., n,maximizes (4.2) and is therefore the socially optimal output-abatement

allocation at time period t. We summarize the above discussion in:

Proposition 1. Under (2.1), (2.3), (4.8) and (4.9), equations (4.4a)-(4.4b)

admit a unique, positive solution g∗i = (y∗i , a
∗
i ) for each i = 1, 2, ..., n, The cor-

responding output-abatement allocation g∗ = (g∗1, g
∗
2, ..., g

∗
n) is socially optimal

at time period t, given the social price of emission τ = τ(t).

Recalling that conditions (3.4a)-(3.4b) and (4.4a)-(4.4b) are the same when

λ = 0, we conclude that:

Corollary 1. Under the conditions of Proposition 1: (i) conditions (3.4a)-

(3.4b) admit a unique, positive solution ψ∗
i (Q(t)) ≡ (y∗i (Q(t)), a

∗
i (Q(t)), i =

1, 2, ..., n; (ii) ψ∗
i (Q(t)) = (y∗i , a

∗
i ), i = 1, 2, ..., n, when λ = 0.

We proceed now to the case where βi is �rm i's private information.
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4.2 Private �rm types information

The social price of emission τ = τ(t) is given (obtained from the inter-

period model). We show in Appendix B that, as in the case of known �rm

types, the optimal output-abatement-emission allocation can be attained by

regulating each �rm separately. We thus consider the regulation of an indi-

vidual (any) �rm and drop the �rm's subscript i.

The mechanism consists of transfer and abatement functions, ŝ(·) and â(·),

de�ned in terms of (observed) output, and proceeds along the following steps:

(i) The regulator announces the functions ŝ(·) and â(·); (ii) the �rm chooses

output y and abatement â(y); (iii) upon observing y, the regulator pays the

transfer ŝ(y) and reimburses the �rm for the abatement â(y). The transfer ŝ(·)

is so speci�ed that the �rm's output choice is socially optimal. Since output

is observable, using ŝ(·) to a�ect the �rm's output choice is straightforward.

Implementing abatement via the â(·) function is more subtle since abatement

is unobserved. We return to this issue after specifying the mechanism and

verifying its desirable properties.

4.2.1 Speci�cation of ŝ(·) and â(·)

The derivation of the transfer function, ŝ(·), and the abatement function,

â(·), builds on the following Direct Revelation Mechanism: The regulator an-

nounces the functions Y (·), A(·) and S(·), following which the �rm reports

its type b. Upon receiving the report b, the regulator assigns the contract

{Y (b), A(b), S(b)}, indicating that the �rm produces Y (b), spends A(b) on

abatement activities and receives the transfer S(b).8

8In general, a �rm's contract depends on the �rm's own report and on the reports of all
other �rms (in which case the mechanism is stochastic, since from the viewpoint of each �rm
the other �rms types are uncertain). We verify in Appendix B that the optimal outcome
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The mechanism is truthful if the �rm will (voluntarily) report its type

honestly, i.e., b = β. The �rm's payo� when it reports b is

Π̃(b, β) = pY (b)− C(Y (b), β)− A(b) + S(b). (4.11)

Necessary condition for truth telling is Π̃1(β, β) ≡ ∂Π̃(b, β)/∂b|b=β = 0 or

[p− C1(Y (β), β)]Y ′(β)− A′(β) + S ′(β) = 0. (4.12)

Given C12 < 0 (cf. (2.3)), the monotonicity condition

Y ′(x) ≥ 0 ∀ x ∈ [0, β̄] (4.13)

is su�cient for truth telling.9

The �rm's payo� under honest reporting is

Π(β) = pY (β)− C(Y (β), β)− A(β) + S(β). (4.14)

Invoking (4.12),

Π′(β) = −C2(Y (β), β). (4.15)

can be attained by a deterministic contract, which depends only on the �rm's own report.
9This can be shown as follows (La�ont and Tirole 1993, p. 121). Suppose b ̸= β yields a

larger payo�:

Π̃(b, β) > Π̃(β, β) ⇒
ˆ b

β

Π̃1(x, β)dx > 0,

which invoking the necessary condition, Π̃1(x, x) = 0 ∀x ∈ [0, β̄], can be expressed as

ˆ b

β

[Π̃1(x, β)− Π̃1(x, x)]dx =

ˆ b

β

ˆ β

x

Π̃12(x, z)dzdx > 0.

Now, Π̃12(x, z) = −C12(q(x), z)Y
′(x) and C12 ≤ 0. If b > β, then x ≥ β and the above

inequality becomes

−
ˆ b

β

ˆ x

β

Π̃12(x, z)dzdx > 0 ⇒
ˆ b

β

ˆ x

β

C12(Y (x), z)Y ′(x)dzdx > 0,

which is impossible when Y ′(x) ≥ 0 ∀x ∈ [0, β̄], ruling out the possibility that Π̃(b, β) >

Π̃(β, β) for b > β. Likewise, when b < β, the inequality reads −
´ β
b

´ β
x
Π̃12(x, z)dzdx =´ β

b

´ β
x
C12(x, z)Y

′(x)dzdx > 0, which is again impossible when Y ′(x) ≥ 0, ruling out the
possibility b < β.
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Since C2 < 0 (cf. (2.3)), Π(·) is increasing and requiring

Π(0) = 0 (4.16)

ensures a nonnegative pro�t for all �rm types.

Noting (4.2), the �rm's contribution to expected intra-period welfare is

ˆ β̄

0

{(1 + λ)[pY (b)− C(Y (b), b)− A(b)]− τG(A(b), b)Y (b)− λΠ(b)} f(b)db

(4.17)

The regulator seeks the functions Y (b), A(b) and Π(b) that maximize (4.17)

subject to (4.13), (4.15) and (4.16).

Consider the problem of maximizing (4.17) subject to (4.15)-(4.16), ignor-

ing the monotonicity constraint (4.13). This is a standard Optimal Control

problem with two controls, Y and A, and one state, Π. Let Y ∗(b), A∗(b) and

Π∗(b) denote the solution of this problem. We verify in Appendix C that

Y ∗(b) and A∗(b) satisfy

p− C1(Y
∗(b), b) =

τG(A∗(b))

1 + λ
− λ

1 + λ

1− F (b)

f(b)
C21(Y

∗(b), b) (4.18a)

and

−G′(A∗(b))Y ∗(b) =
1 + λ

τ
. (4.18b)

Using (4.15)-(4.16), we obtain

Π∗(b) =

ˆ b

0

−C2(Y
∗(z), z)dz (4.19)

and (4.14) then gives

S∗(b) = Π∗(b)− [pY ∗(b)− C(Y ∗(b), b)− A∗(b)]. (4.20)

It turns out that Y ∗(·), A∗(·) and Π∗(·) are also the optimal solutions for

the problem of maximizing (4.17) subject to (4.15)-(4.16) and the monotonicity

constraint (4.13). This follows from:
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Lemma 2. Under (2.1), (2.3) and (4.7), Y ∗′(b) > 0 and A∗′(b) > 0 for all

b ∈ [0, β̄].

The proof is given in Appendix D.

The optimal output and abatement are, respectively,

y∗λ ≡ Y ∗(β) (4.21)

and

a∗λ ≡ A∗(β). (4.22)

From (3.4a)-(3.4b), (4.4a)-(4.4b) and (4.18a)-(4.18b), we see that

(y∗λi , a
∗λ
i ) = (y∗i , a

∗
i ) = ψ∗

i (Q(t)), i = 1, 2, ..., n,

when λ = 0 (zero social cost of transfers), where ψ∗
i (Q(t)) is the social planner

output-abatement allocation of �rm i, satisfying (3.4a)-(3.4b). A positive

λ causes these allocations to deviate from each other. The wedge between

(y∗λi , a
∗λ
i ) and (y∗i , a

∗
i ) re�ects the �rm's information rent associated its type

being a private information; it is represented by the rightmost term of equation

(4.18a) evaluated at b = βi. The wedge between (y∗i , a
∗
i ) and ψ∗

i (Q(t)) is

due to the fact that the former allocations are implemented when individual

abatements and emissions are unobserved (via the transfers s∗i ), whereas the

allocations ψ∗
i (Q(t)) are determined by the social planner from the outset. The

allocation (y∗λi , a
∗λ
i ), i = 1, 2, ..., n, is optimal when �rm types and abatements

are private information and individual emissions are unobserved.

4.2.2 Implementation

With a monotonic Y ∗(·), the inverse function φ ≡ Y ∗−1 : R+ 7→ [0, β̄]

exists, is increasing and satis�es, noting (4.21),

φ(y∗λ) = β. (4.23)
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Following (4.19), de�ne

π̂(y) =

ˆ y

Y ∗(0)

−C2(z, φ(z))φ
′(z)dz (4.24)

for y ≥ Y ∗(0). The functions ŝ(·) and â(·) are de�ned by:

ŝ(y) ≡ π̂(y)− [py − C(y, φ(y))] (4.25)

and

â(y) ≡ A∗(φ(y)). (4.26)

The contract consisting of the transfer and abatement functions speci�ed

in (4.25)-(4.26) is called the [ŝ, â] contract. We show that:

Proposition 2. The [ŝ, â] contract implements the optimal output-abatement

allocation (y∗λ, a∗λ).

Proof. Noting (4.25), the �rm's post-transfer pro�t, py−C(y, β)+ ŝ(y), equals

C(y, φ(y))− C(y, β) + π̂(y).

The pro�t maximizing output satis�es, noting (4.24),

C1(y, φ(y))− C1(y, β) = C12(y, β̃)[φ(y)− β] = 0

for some β̃ between β and φ(y). Since C12(y, ·) < 0 and φ(·) is increasing, y∗λ

(cf. (4.21)) is the unique pro�t maximizing output, implying that the transfer

ŝ(·) implements the optimal output y∗λ.

Noting (4.23), the output y∗λ identi�es β, which together with (4.22) and

(4.26) implies â(y∗λ) = a∗λ, giving rise to the optimal abatement.

We reiterate the �nal point of the proof in:
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Remark 1. The observed output of �rm i reveals its type βi (cf. equation

(4.23)).

The �rm types βi(t), i = 1, 2, ..., n, give rise to mi(t + 1), identifying the

distribution of βi(t + 1) at the beginning of period t + 1, to be used at the

beginning of period t+ 1 by the inter-period model.

As was noted above, implementing the optimal output via ŝ(·) is straight-

forward since output is observable. Implementing the abatement via â(·) is

more subtle since abatement is unobserved. How can the regulator verify

that the �rm actually carries out the abatement â(y∗λ) when he cannot ob-

serve abatement e�orts in actual practice? After all, receiving an abatement

subsidy and performing abatement activities are two di�erent things: the �rst

is mutually observed while the second is known only to the �rm. This problem

is resolved when the regulator observes total cost C + a. This is so because

the �rm's output choice reveals the �rm's type β (Remark 1), hence ex post

(after y has been observed and the true type β revealed) the regulator can

calculate the production cost C(y∗λ, β) and subtract from the total cost C + a

to obtain the abatement cost.

The abatement e�ort (cost) in our model is similar to the cost reduction ef-

fort in La�ont and Tirole (1986) and the use of cost reimbursement is therefore

similar. While in La�ont and Tirole (1986) the entire �rm's cost is reimbursed,

here only part of the cost � that due to abatement � is reimbursed. In our case,

if the total cost were observed, the regulator could infer the �rm's abatement

cost and reimburse it accordingly.

If total cost is unobserved, some extraneous device is needed to deter abate-

ment shirking, i.e., to ensure that �rms carry out the abatement activities for
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which they are reimbursed. For example, a monitoring-sanction scheme en-

forced by the court system (see Shavell 1987).

When λ = 0 (zero social cost of transfers), the [ŝ, â] contracts implement

the �rst-best allocation (y∗i , a
∗
i ) = ψ∗

i (Q(t)) for all i. To see this, note that

y∗λ = Y ∗(β) and a∗λ = A∗(β), where Y ∗(β) and A∗(β) solve (4.18a)-(4.18b)

with b = β. But when λ = 0, (4.18a) is the same as (4.4a) and (4.18b) is the

same as (4.4b). Since the solution of (4.4a)-(4.4b) is unique (Proposition 1),

the two solutions must be the same (the equality to ψ∗
i follows from Corollary

1). Under zero social cost of transfers, the regulator can nullify the �rm's

information rent and the optimal regulations attains the �rst-best outcome.

When λ > 0, (4.18a) implies (recalling C12 < 0 and dropping the �rm's

subscript i),

p− C1(q(a
∗λ), β)− τG(a∗λ)

1 + λ
> 0

where, q(a) = −(1 + λ)/(τG(a)) is de�ned in (4.5). Likewise, from (4.4a),

p− C1(q(a
∗), β)− τG(a∗)

1 + λ
= 0.

Subtracting the latter from the former gives

C1(q(a
∗), β)− C1(q(a

∗λ), β) +
τ

1 + λ

[
G(a∗)−G(a∗λ)

]
> 0.

The above inequality can be expressed as

ˆ a∗

a∗λ

[
C11(q(α), β)q1(α) +

τ

1 + λ
G′(α)

]
dα > 0.

In view of (4.8), the integrand (the term inside the square brackets) is positive,

implying a∗λ < a∗, hence y∗λ = q(a∗λ) < q(a∗) = y∗. We summarize the above

discussion in:
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Proposition 3. (i) When λ = 0 (zero social cost of transfers), the [ŝ, â]

mechanism implements the �rst-best allocation: (y∗λ, a∗λ) = (y∗, a∗). (ii)

When λ > 0, the mechanism gives rise to smaller output and abatement: y∗λ <

y∗ and a∗λ < a∗.

When transfers are costly, noting thatG(·) is decreasing, emission, G(a∗λ)y∗λ,

may exceed or fall short of G(a∗)y∗, depending on the speci�cations of the

underlying production and abatement technologies and the asymmetric infor-

mation (type distribution).

4.3 Discussion

The regulation proceeds along the following stages. At the beginning of

period t, Q(t) and M(t) are observed, based on which the social price of emis-

sion, τ(t) is calculated (Section 3). Based on τ(t) and the distributions of

�rm types (characterized by M(t)), an [ŝ, â] contract is speci�ed and applied

for each �rm (Section 4.2). Upon observing outputs, abatements are reim-

bursed according to â(y) (the â part of the [ŝ, â] contract � equation (4.26))

and the �rm types βi(t), i = 1, 2, ..., n, are revealed (Remark 1), giving rise

to M(t+ 1) (Section 2.2). The output-abatement allocation gives rise to ag-

gregate emission E(g(t)) (equation (2.4)). A realization of Z(t + 1) forms

Q(t + 1) (equation (2.6)). These steps are repeated in period t + 1. The

mechanism is initiated given Q(1) and M(1).

Noting Lemma 2, the mechanism rewards e�ciency in that output increases

with the �rm's type. Since more output implies more emission (given abate-

ment), the mechanism also requires that more e�cient �rms (with a higher βi)

will spend more on abatement (Lemma 2 again).

The regulation budget in period t is
∑

i ŝi(yi(t)) +
∑

i âi(yi(t)). The �rst
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term is the total transfer needed to induce �rms to account for their external

e�ects in their production decisions. The second term is the total cost of

abatement. Covering the cost of abatement from public funds is justi�able

since abatement activities bene�t the public at large. The transfer cost (the

�rst term) is due to the nonpoint source pollution feature (the unobserved in-

dividual emissions) and using public funds to �nance it may be controversial.

Regulation budget considerations raise a whole range of issues that lie outside

the present scope (see discussion in Hyde et al. 2000). We only note that

incorporating lump sum transfers within the �rms contracts, e.g., by subtract-

ing a constant amount from the ŝ(y) part of each [ŝ, â] contract, will not a�ect

the resulting allocation but will a�ect the regulation budget in each period.

5 Concluding comments

The literature on dynamic regulating of nonpoint source pollution processes

relies on ambient-based policies applied to strategically interacting polluters.

Such policies are of limited use when polluters assume that their own contribu-

tions to ambient (aggregate) pollution as well as their e�ect on other polluters

decisions are negligible, which is often the case when emitters are numerous and

dispersed. We o�er a dynamic regulation mechanism for such situations. The

mechanism consists of inter-period and intra-period components that evolve

together in time and interact with each other. The inter-period model cal-

culates the optimal pollution process and the ensuing social price of emission

in each time period, based on aggregate (ambient) pollution observations and

available �rms' information (type distributions). Given the emission price,

the intra-period mechanism implements the optimal output-abatement alloca-
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tion across the heterogenous, privately informed �rms in each time period via

spot contracts, designed for each �rm separately.

A �rm's contract consists of a transfer function and an abatement function,

both de�ned in terms of the �rm's (observable) output. The transfer function

induces the �rm to internalize its external e�ect. Given the output choice,

the abatement function determines the optimal abatement e�ort. The �rm's

output choice resolves the asymmetric information and allows implementation

of optimal abatement when the �rm's total cost is observed. If total cost is

not observed, an additional device is needed to ensure that the �rm actually

carries out the abatement for which it has been reimbursed, e.g., a monitoring-

sanction scheme enforced via the court system.

Given the social price of emission (determined by the inter-period model),

the intra-period contracts implement the �rst-best output-abatement alloca-

tion when the social cost of transfers is nil. When the social cost of transfers is

positive, the optimal output and abatement, implemented by the mechanism,

are smaller than their complete information counterparts, though emission may

be larger or smaller (less abatement increases emission while smaller output

decreases emission).

The ability to implement the intra-period output-abatement allocations via

a series of spot contracts owes to the lack of private (�rm speci�c) stocks (e.g.,

abatement capital): the only stock variable in the model is the (public) stock

of pollution. Extending the present framework to account for private capital

stocks remains a challenge for future research.
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Appendix

A Proof of Lemma 1

Noting that Jyy ≡∂2J/∂y2 < 0 and Jaa ≡ ∂2J/∂a2 < 0 , we need to show

that the determinant of the Hessian matrix of J(y, a),

HJ = (1 + λ)C11(y, β)τG
′′(a)y − τ 2G′ 2(a),

is nonnegative. Noting C111 ≥ 0 (cf. (2.1)) and (4.10)

HJ ≥ (1 + λ)C11(q(a), β)τG
′′(a)q(a)− τ 2G ′ 2(a),

so we need to show that the term on the right-hand side above is nonnegative

or, alternatively, that

1 + λ

τ

1

−G ′(a)
C11(q(a), β)G

′′(a)q(a) +G ′(a) ≥ 0. (A.1)

Noting (4.5), (4.10) and q′(a) = 1+λ
τ
G ′′(a)/G ′ 2(a), the left-hand side of (A.1)

becomes

C11(q(a), β)q
′(a)[−G ′(a)q(a)] +G ′(a).

Since −G ′(a)q(a) = (1 + λ)/τ (cf. (4.5)), this expression can be rendered as

C11(q(a), β)q
′(a) +

τ

1 + λ
G ′(a),

which is nonnegative by (4.8), implying that inequality (A.1) holds.

B Optimality of deterministic mechanisms

In general, contracts are speci�ed in terms of functions that depend on the

reports of all �rms (mechanisms based on such contracts are stochastic, since

from the viewpoint of a single �rm, the other �rms types are uncertain). We
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verify that the maximal expected welfare can be attained by a deterministic

mechanism, where contracts are speci�ed for each �rm separately and depend

only on the �rm's own report.

Denote by B−i the vector of the true types of all �rms except �rm i. The

mechanism is truthful if �rm i will (voluntarily) report its type honestly, i.e.,

bi = βi, when all other �rms report honestly. Firm i's expected payo� when

it reports bi and all other �rms report their true types is

πi(bi, βi) = EB−i
{pyi(bi, B−i)− Ci(yi(bi, B−i), βi)− ai(bi, B−i) + si(bi, B−i)}.

(B.1)

The �rm will report honestly if πi(βi, βi) ≥ πi(bi, βi) ∀ bi ∈ [0, β̄i]. The neces-

sary condition for truthtelling is πi1(βi, βi) ≡ ∂πi(bi, βi)/∂bi|bi=βi = 0 or

EB−i
{[p− Ci1(yi(βi, B−i), βi)]yi1(βi, B−i)− ai1(βi, B−i) + si1(βi, B−i)} = 0.

(B.2)

Firm i's payo� under honest reporting is

π̃i(βi) = EB−i
{pyi(βi, B−i)− Ci(yi(βi, B−i), βi)− ai(βi, B−i) + si(βi, B−i)}.

(B.3)

Di�erentiating with respect to βi and invoking (B.2) gives

π̃′
i(βi) = EB−i

{−Ci2(yi(βi, B−i), βi)}. (B.4)

Since Ci2 < 0 (cf. (2.1)), π̃i(·) is increasing and requiring

π̃i(0) = 0 (B.5)

ensures a nonnegative pro�t for all types.

Period t's welfare (4.2) generalizes to

v =
∑
i

Eβi{EB−i
{Ji(yi(βi, B−i), ai(βi, B−i))} − λπ̃i(βi)} (B.6)
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where Ji(yi, ai) is de�ned in (4.3). The regulator seeks the functions yi(·, ·),

ai(·, ·) and π̃i(·) that maximize v subject to (B.4) and (B.5). Let v∗ be the

optimal expected welfare, i.e., the value (B.6) evaluated at the optimal mech-

anism. Then,

Proposition 4. Under (2.1), (2.3) and (4.8), v∗ can be realized by determin-

istic contracts {Yi(·), Ai(·), Si(·)}, each depending on �rm i's own report.

Proof. We begin by showing that the optimal mechanism satis�es (4.10), i.e.,

yi(βi, B−i) ≥ q(ai(βi, B−i)) ∀ i, (B.7)

where q(·) is de�ned in (4.5). Suppose otherwise, that yi < q(ai). Then

(recalling Ja(q, a) = 0, Jaa < 0 and q′ > 0), as long as yi < q(ai), decreasing

ai (keeping yi constant) increases Ji without any e�ect on π̃i (which depends

on yi via (B.4)-(B.5)), thereby increasing the term inside Eβi{·} in (B.6) and

the ensuing value, which cannot be optimal. We thus con�ne attention to

the domain (yi, ai) ∈ R2
+ satisfying (B.7) (or (4.10)), over which (Lemma 1)

Ji(yi, ai) is concave.

We can now show that to any stochastic mechanism there corresponds

a deterministic mechanism that performs at lease as well, in that it gen-

erates an expected welfare which is at least as large as that generated by

the underlying stochastic mechanism. Let Yi(βi) ≡ EB−i
{yi(βi, B−i)} and

Ai(βi) ≡ EB−i
{ai(βi, B−i)}. Then, using the concavity of Ji(y, a), we obtain

(Jensen's inequality),

EB−i
Ji(yi(βi, B−i), ai(βi, B−i)) ≤ Ji(Yi(βi), Ai(βi)).

Moreover, C211 ≤ 0 (cf. (2.1)) implies EB−i
{−Ci2(yi(βi, B−i), βi)} ≥ −Ci2(Yi(βi), βi)

30



for all βi ∈ [0, β̄i], hence

π̃i(βi) =

ˆ βi

0

EB−i
{−Ci2(yi(x,B−i), x)}dx ≥

ˆ βi

0

−Ci2(Y i(x), x)dx = Πi(βi),

where Πi is obtained from Π′
i(βi) = −Ci2(Yi(βi), βi) and Πi(0) = 0. It follows

that the expected welfare (B.6) corresponding to the deterministic mechanism

(Yi(·), Ai(·), Si(·)), where Si(·) is derived from Πi(·) according to (4.20), is at

least as large as that obtained under the underlying stochastic mechanism.

C Derivation of Y ∗(·) and A∗(·)

With µ(b) representing the costate variable, the Hamiltonian corresponding

to the subproblem of maximizing (4.17) subject to (4.15)-(4.16) is

H(b) = {(1 + λ)[pY (b)− C(Y (b), b)− A(b)]− τG(A(b))Y (b)− λΠ(b)}f(b)

− µ(b)C2(Y (b), b).

Necessary conditions for an interior optimum include

{(1 + λ)[p− C1(Y
∗(b), b)]− τG(A∗(b))} f(b)− µ(b)C21(Y

∗(b), b) = 0, (C.1)

−G ′(A∗(b))Y ∗(b) =
1 + λ

τ
, (C.2)

µ′(b) = λf(b) (C.3)

and the transversality condition, associated with free Π(β̄),

µ(β̄) = 0. (C.4)
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Integrating (C.3), using (C.4), gives

−µ(b) = λ[1− F (b)]. (C.5)

Substituting (C.5) in (C.1) and rearranging gives (4.18a) and (C.2) gives

(4.18b).

D Proof of Lemma 2

Total di�erentiate (4.18b) gives

A∗′ =
−G ′Y ∗′

G ′′Y ∗ (D.1)

and totally di�erentiate (4.18a), using (D.1), gives Y ∗′M1 =M2, where

M1 = −C11 +
τ

1 + λ

G ′ 2

G ′′
1

Y ∗ +
λ

(1 + λ)h
C211,

and

M2 = C12

(
1 +

λ

1 + λ

h′

h2

)
− λ

(1 + λ)h
C212

(the arguments Y ∗(b), A∗(b) and b are suppressed for convenience). The non-

decreasing hazard ( h′ ≥ 0) together with (2.1) and (2.3) imply that M2 < 0.

We show that M1 < 0.

Noting (2.1), the right-most term ofM1 is non-positive, so we need to show

−C11 +
τ

1 + λ

G ′ 2

G ′′
1

Y ∗ < 0. (D.2)

Recalling (4.5), multiply (D.2) by

q′ =
1 + λ

τ

G ′′

G ′ 2 > 0

to obtain

−C11q
′ +

1

Y ∗ < 0.
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Invoking (C.2), the left-hand side above can be expressed as

−C11q
′ − τ

1 + λ
G ′, (D.3)

which equals the negative of the left-hand side of (4.8) evaluated at a = A∗

and β = b, verifying inequality (D.2) and, thereby, Y ∗′ > 0 . A∗′ > 0, then,

follows from (2.3) and (D.1).
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