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We extend Weitzman’s (1998) recombinant growth framework to include
endogenous R&D decisions. The analysis is carried out in the (knowledge-
capital) state space by means of two characteristic curves: one is identified as a
turnpike along which growing economies evolve; the other attracts stagnating
economies. Sustained growth depends on a condition relating the slopes of
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1 Introduction

As technological progress is driven by assets loosely labelled as knowledge or

human capital, understanding economic growth requires unfolding the mechanism

through which these assets are accumulated. The endogenous growth literature pre-

dominately follows the original works of Romer (1986, 1990), Lucas (1988), Gross-

man and Helpman (1991) and Aghion and Howitt (1992).1 In these studies the

(sought-after) balanced long-run growth is obtained by imposing certain restric-

tions on the knowledge generation mechanism (Solow 2000). Weitzman’s (1998)

recombinant mechanism addresses these issues. In this mechanism, existing ideas

are combined to generate new ideas. The number of new combinations is a combi-

natorial function of the number of existing ideas, and if this number were the only

limiting factor in knowledge production, the model would give rise to an unrealistic

super-exponential growth. Turning a potentially fruitful idea into useful knowledge,

however, requires R&D efforts that consume resources. Weitzman (1998) assumes

that a constant (exogenous) share of output is allocated to R&D and obtains bal-

anced long-run growth. The limit to growth in this model stems not from lack of

new ideas but from the limits on R&D resources that can be devoted to turn new

ideas into useful knowledge.

In this work we extend Weitzman’s (1998) recombinant growth framework to

allow for endogenous R&D decisions. We provide a complete dynamic characteri-

zation and derive the conditions that give rise to sustained growth. The analysis

is carried out in the (knowledge-capital) state space in terms of two characteristic

curves, of which one is identified as a turnpike along which growing economies evolve

and the other attracts stagnating economies. The turnpike approaches a straight
1For recent literature see Barro and Sala-i-Martin (2004) and Helpman (2004).
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line at large knowledge levels while the stagnation curve turns out to be linear at all

knowledge levels. A necessary growth condition is specified in terms of the slopes

of these characteristic lines. Qualifying economies have the capacity to grow but

need sufficient endowment to realize their growth potential. When the growth con-

ditions are met, the knowledge-capital processes reach the turnpike at a most rapid

R&D rate and evolve along it thereafter, eventually growing at a constant rate and

devoting constant shares of income to R&D, saving and consumption.

Our method of analysis applies to situations in which investment in knowledge

(or human capital) generation consumes a share of income and has been used to

study other endogenous growth models (Tsur and Zemel 2004, 2005). As such

knowledge investment rules are not uncommon (see, e.g., Shell 1967 and Chapter 5

of Barro and Sala-i-Martin 2004), the analysis extends beyond the present case of

recombinant growth.

The next section revisits Weitzman’s (1998) recombinant framework and formu-

lates it in continuous time with endogenous R&D decisions. Section 3 motivates

the endogenous formulation as the outcome of a competitive economy with knowl-

edge as a regulated public good. Section 4 provides the dynamic characterization

and establishes the properties of balanced growth. Section 5 presents an example

illustrating the general results for a Cobb-Douglas economy. Section 6 concludes

and an appendix contains technical derivations and proofs.

2 Formulation

Weitzman’s (1998) knowledge generation mechanism is driven by the combina-

torial power of hybridizing existing ideas to generate progeny ideas, which are then

recombined with new and old ideas to generate yet newer ideas and so on. In

Weitzman’s (1998) notation, A(t) stands for the stock of knowledge (useful ideas)
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at time t, Cm(A) is the number of different combinations (or hybrids) of m elements

of A (e.g., C2(A) = A(A− 1)/2) and

H(t) = Cm(A(t))− Cm(A(t− 1))

is the number of new m-combinations (or seed ideas) formed during time period t.

In a continuous time formulation we treat A, Cm and H as continuous functions

and relate the rate at which new seed ideas are generated to the rate of change of

knowledge stock according to

H(t) = C ′
m(A(t))Ȧ(t). (2.1)

In fact, not every seed idea contributes to the state of knowledge. The probability

π of a seed idea turning into useful knowledge depends on R&D efforts devoted

for this purpose. According to Weitzman (1998), a fraction s of net output Y is

invested in R&D efforts to hybridize H seed ideas. This R&D expenditure generates

Hπ(sY/H) useful new ideas that contribute to the knowledge base A. Knowledge,

thus, evolves according to

Ȧ(t) = H(t)π(s(t)Y (t)/H(t)). (2.2)

The success probability π satisfies π(0) = 0, π′ > 0, π′′ ≤ 0 and π(∞) ≤ 1.

Combining (2.1) and (2.2) gives

Ȧ(t) =
s(t)Y (t)
Φ(A(t))

, (2.3)

where

Φ(A) = C ′
m(A)π−1

(
1

C ′
m(A)

)
(2.4)

represents the expected unit cost of knowledge production. The function Φ(A) is

non-increasing and the limit

lim
A→∞

Φ(A) = 1/π′(0) > 0 (2.5)
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measures the expected unit cost when seed ideas abound.

The knowledge production process (2.3) is incorporated within the standard

neoclassical framework, in which output is produced by capital and knowledge-

augmented labor according to

Y (t) = F (K(t), A(t)L), (2.6)

where F is concave and linearly homogenous with FK = ∂F/∂K (= F1) and

FA = ∂F/∂A (= F2L) denoting the marginal productivity of capital and knowl-

edge, respectively, and F11 < 0, F22 < 0 and F12 ≥ 0. To focus attention on

endogenous growth, we assume that labor L is constant.

Our departure from Weitzman (1998) concerns the shares of income devoted to

R&D and saving. Weitzman (1998) takes the R&D and saving shares as behavioral

parameters, while here they are determined endogenously. Given the R&D share

s(t), capital evolves according to

K̇(t) = (1− s(t))Y (t)− Lc(t), (2.7)

where c(t) is per capita consumption at time t, generating the instantaneous utility

u(c(t)) for some increasing and strictly concave function u(c). The endogenous

R&D-saving-consumption policy is the outcome of

V (K0, A0) = max
{c(t),s(t)}

∫ ∞

0
Lu(c(t))e−ρtdt (2.8)

subject to (2.3)-(2.7), 0 ≤ s(t) ≤ 1, and other feasibility (e.g., non-negativity)

constraints, given the endowment K(0) = K0 and A(0) = A0. In (2.8), ρ is the

utility discount rate and the upper bound on s corresponds to investing all income

in R&D and eating-up capital to finance consumption.
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3 A competitive rationale

It might be objected that the optimal policy corresponding to (2.8) does not

describe competitive behavior because it maximizes aggregate welfare ignoring the

public good nature of knowledge. We present, therefore, a regulated competitive

economy with a public good (knowledge) that gives rise to (2.8).

The stylized economy consists of an R&D sector, an output producing sector,

identical households and a regulator. The R&D firms that transform the seed ideas

into useful knowledge are financed by taxing household income at the rate s(t).2

Households own capital and labor, and derive income by renting these production

factors to output producing firms.

Output producing firms operate in a competitive environment and seek to max-

imize instantaneous profit. At each point of time firm i rents capital Ki and hires

labor Li to produce a composite good according to the linearly homogenous pro-

duction function Yi = F (Ki, ALi) = ALif(k/A), taking as given the labor wage

w, the capital rental rate r and the state of knowledge A, where k = Ki/Li and

f(x) = F (x, 1).3 The capital demand condition is

f ′(k/A) = r (3.1)

and the labor market clearing condition requires that per worker profit vanishes,

i.e.,

Af(k/A)− rk − w = 0. (3.2)

From (3.2) and (2.6), the household income y(t) is given by

y(t) = r(t)k(t) + w(t) = A(t)f(k(t)/A(t)) = Y (t)/L. (3.3)
2This is evidently an abstraction, emphasizing the public good nature of knowledge and ignoring

issues such as intellectual property rights and patent race.
3Firms using the same technology and facing the same market conditions employ factors at the

same capital/labor ratio k hence the subscript i can be dropped.
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Given that a fraction s(t) of their income is collected as taxes to finance R&D,

households allocate the remaining income (1 − s(t))y(t) between consumption c(t)

and saving k̇(t),

k̇(t) = (1− s(t))y(t)− c(t), (3.4)

and enjoy the instantaneous utility u(c(t)). The present value of a utility stream

over the indefinite horizon is

∫ ∞

0
u(c(t))e−ρtdt. (3.5)

The household seeks the feasible consumption plan c(t) that maximizes (3.5)

subject to (3.4), given the initial capital k0. In solving this problem, the household

takes the tax policy s(t) and the ensuing knowledge process A(t) (treated as a public

good and evolving according to (2.3)) as exogenous functions of time.

The regulator’s role is to determine the tax policy s(t). Multiplying (3.4) and

(3.5) by L gives (2.7) and the objective of (2.8). Thus, the optimal tax policy,

which fully accounts for the public good nature of knowledge, is determined by the

social allocation problem (2.8).

4 Growth patterns

We characterize here the patterns of growth generated by (2.8), expressed more

conveniently in terms of the per-capita stock k = K/L and the per-capita unit cost

of knowledge production

ϕ(A) = Φ(A)/L.

The analysis is carried out in the (A, k) state space by means of two characteristic

curves that divide the space into distinct regions and impose restrictions on the
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R&D behavior in each of these regions. The salient features of the solution are

presented here while the detailed derivations are relegated to the appendix.

The first curve, denoted k̃(A), consists of the locus of (A, k) states satisfying

Fk(k, A) = FA(k, A)/ϕ(A). (4.1)

Equation (4.1) can be interpreted as a no-arbitrage condition, implying that along

k̃(A) the marginal productivity of capital investment equals that of knowledge in-

vestment. Recalling that F (k, A) = Af(k/A), this condition reduces to z(k/A) =

ϕ(A), where the function z(x) = f(x)/f ′(x)−x is increasing with z(0) = 0. Solving

for k, we obtain

k̃(A) = z−1(ϕ(A))A. (4.2)

As shown in the appendix, the curve k̃(A) traces the unique locus in the (A, k)

space along which both knowledge and capital grow simultaneously. The tendency

to equate the marginal productivity of knowledge with that of capital stems from

the observation that both factors compete for shares of the same income source. In

the (A, k) region where capital is more productive at the margin, giving up some

capital to finance knowledge accumulation implies an income loss exceeding the

gain generated by the additional knowledge, hence R&D efforts are not warranted.

Along k̃(A) capital and knowledge are equally productive at the margin and the

household is indifferent between investing in one or the other.

The second characteristic curve, denoted k̂(A), consists of the locus of (A, k)

states where the capital rental rate r = f ′(k/A) (see 3.1) equals the discount rate ρ

f ′(k/A) = ρ. (4.3)

Since f ′(k/A) = Fk(k, A) is decreasing, (4.3) can be solved to yield

k̂(A) = f ′−1(ρ)A ≡ η̂A (4.4)
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and k̂(A) is the straight line emanating from the origin with the slope η̂ = f ′−1(ρ).

The significance of the characteristic curves k̃(A) and k̂(A) is stated in:

Proposition 1. Economies that sustain long run growth first reach k̃(A) at a most

rapid R&D rate, setting s(t) = 1 while above k̃(A) or s(t) = 0 while below it,4 and

evolve along k̃(A) thereafter. Economies that fail to grow in the long run eventually

reach a steady state on k̂(A).

In view of the proposition, we refer to k̃(A) and k̂(A) as the turnpike and the

stagnation line, respectively. Economies that sustain growth in the long run are

called growing, while those that converge to a steady state (on the stagnation line)

are called stagnating. We turn now to specify the conditions for long run growth.

Let

k̃∞(A) = z−1

(
1

Lπ′(0)

)
A ≡ η̃A (4.5)

be the straight line emanating from the origin with the slope η̃ = z−1 (1/(Lπ′(0))).

In view of (2.5) and (4.2), k̃(A) approaches k̃∞(A) as A increases and we refer to

k̃∞(A) as the asymptotic turnpike.5 Since ϕ(A) is non-increasing, the turnpike lies

above the asymptotic line, k̃(A) ≥ k̃∞(A).

The slope difference (η̂ − η̃) determines the relative positions of the stagnation

line and the asymptotic turnpike, and serves as the basis for the following growth

condition:

Proposition 2. Economies for which

η̂ − η̃ > 0 (4.6)

holds have the potential to sustain long run growth. Economies for which the reverse

condition holds eventually stagnate.
4An economy lies above (below) k̃(A) if its capital exceeds (falls short of) k̃(A) when its knowl-

edge stock is A.
5Cm(A) = O(Am) and C′m(A) = O(Am−1), hence limA→∞[k̃(A)− k̃∞(A)] = 0 for m > 2.
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Having the potential to grow (i.e., satisfying condition (4.6)) does not ensure

sustained growth, as realizing this potential requires sufficient resources (see Propo-

sition 3 below). Condition (4.6) is readily interpreted. As stated in Proposition 1,

a growing economy eventually evolves along the turnpike and its long-run marginal

productivity of capital defines, according to (3.1), the long-run capital rental rate

r∞ ≡ lim
A→∞

f ′(k̃(A)/A) = lim
A→∞

f ′(k̃∞(A)/A) = f ′(η̃). (4.7)

Thus, recalling that f ′ is decreasing, (4.6) is equivalent to

r∞ = f ′(η̃) > f ′(η̂) = f ′(f ′−1(ρ)) = ρ, (4.8)

i.e., the long-run equilibrium interest rate exceeds impatience – a familiar growth

condition.

Consider now the intertemporal elasticity corresponding to u(c) and assume that

lim
c→∞

{−u′′(c)c
u′(c)

}
≡ σ ≥ 1. (4.9)

The following characterization holds:

Proposition 3. Suppose that the growth condition (4.6) is satisfied. To any initial

knowledge stock A0 there corresponds a threshold capital stock ksk(A0) ≥ 0, such

that when k0 ≥ ksk(A0) the economy reaches in the long run a balanced growth path

in which output, knowledge, capital and consumption all grow at the constant rate

g∞ =
r∞ − ρ

σ
(4.10)

and the constant income shares

s∞ =
g∞
r∞

(
1

1 + η̃Lπ′(0)

)
(4.11)

and

sk
∞ =

g∞
r∞

(
η̃Lπ′(0)

1 + η̃Lπ′(0)

)
(4.12)
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are devoted to investments in knowledge and capital, respectively. If k0 < ksk(A0)

the economy eventually stagnates.

A few observations are noteworthy. First, (4.10) agrees with the familiar Ram-

sey’s rule (Ramsey 1928, equation 9). Second, (4.11) verifies that Weitzman’s (1998)

assumption (of a constant income share devoted to R&D) is consistent with opti-

mizing behavior, albeit only in the long run and subject to the growth conditions.

Third, a growing economy invests in the long run the share s∞+sk∞ = g∞/r∞ of its

income and consumes the remaining share 1− g∞/r∞. Finally, the critical capital

stock ksk(A0) is akin to Skiba’s (1978) threshold, hence the superscript ’sk’.

The long run exponential growth is evidently due to the asymptotic linear rela-

tion established between knowledge generation and output (cf. (2.3) and (2.5)),

which gives rise to the linear asymptotic turnpike (4.5). As noted by Weitz-

man (1998), this asymptotic relation follows an intrinsic feature of the recombinant

knowledge generating mechanism: the power of the combinatorial functions implies

that H (the set of new seed ideas) grows faster than A. Indeed, (2.1) implies that

when Ȧ/A is constant, H = O(Am). Because growth is driven by knowledge, output

cannot outgrow knowledge and as the growth process proceeds, R&D expenditure

per hybrid (sY/H) shrinks and so does the probability π(sY/H) that the hybrid

will yield a viable progeny idea. Eventually, the number of hybrids ceases to be

a constraint and the limited resources available for R&D regulate the processing of

new ideas such that knowledge, capital, output and consumption all grow at the

same constant rate.

It is now possible to verify that the long run growth rate of (4.10) agrees with the

general result of Weitzman (1998, equation 38): g∞ = F (sk∞, s∞Lπ′(0)). Recalling

(cf. (4.7) and (4.5)) that r∞ = f ′(η̃) and Lπ′(0) = 1/z(η̃), we use (4.11), (4.12) and
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z(x) = f(x)/f ′(x) − x to obtain F (sk∞, s∞Lπ′(0)) = s∞Lπ′(0)f(η̃) = g∞
f ′(η̃)

f(η̃)
z(η̃)+η̃ =

g∞. Here, however, the long run investment shares (s∞ and sk∞ defined in (4.11) and

(4.12)) are endogenous variables that depend on the economy’s underlying structure

vis-à-vis its production technology F , R&D effectiveness π, and the preferences

parameters ρ and σ.

ksk(A0) 

A

Stagnation line

Turnpike

)(
~

0Ak

A0

k

)(ˆ 0Ak

Asymptotic 
turnpike

A�̂

A�~

Figure 1: Knowledge-capital processes of economies that satisfy the growth condi-
tion (4.6) when ksk(A0) < k̃(A0). Arrows indicate direction of process evolution.

Figure 1 displays possible state-space trajectories of potentially growing economies

(that satisfy the growth condition (4.6)) when ksk(A0) < k̃(A0). The threshold en-

dowment ksk(A0) separates economies into growing (above the threshold) and stag-

nating (below it). A growing economy with capital endowment between ksk(A0)

and k̃(A0) will initially avoid R&D to build up capital. As soon as its capital reaches

k̃(A0), the economy tunes its consumption/saving rates so as to evolve along the

turnpike (see the appendix). If capital endowment exceeds k̃(A0), R&D is ini-

tially financed at the maximal rate (s = 1) until the turnpike is reached, at which

time the turnpike policy is adopted. As knowledge increases, the turnpike turns
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into a straight line (the asymptotic turnpike) and the economy approaches the bal-

anced growth specified in Proposition 3. For a poorly endowed economy, with

k0 < ksk(A0), R&D is never warranted and the economy eventually stagnates at

k̂(A0).

Stagnation line

ksk(A0)

ka(A0) 

A

Turnpike

)(
~

0Ak

A0

k

)(ˆ 0Ak

Asymptotic 
turnpike

A�̂

A�~

Figure 2: Knowledge-capital processes of economies that satisfy the growth condi-
tion (4.6) when k̃(A0) < ksk(A0). Arrows indicate direction of process evolution.

State-space trajectories of potentially growing economies when ksk(A0) > k̃(A0)

are depicted in Figure 2. Here it is possible that an economy with capital endowment

below ksk(A0) (but above another threshold level ka(A0)) will temporarily invest in

R&D at the maximal rate (s = 1). After a while, as capital decreases, R&D ceases

to be attractive and is terminated abruptly. From that time onward the economy

converges gradually, according to the one dimensional version of (2.8) with s = 0

and fixed A, to a point on the stagnation line below.

State-space trajectories of stagnating economies (that violate the growth condi-

tion (4.6)) are depicted in Figure 3. Except for capital endowments exceeding the

threshold k1(A0), R&D is not warranted and the economy approaches stagnation at

(A0, k̂(A0)). Capital endowments above k1(A0) justify maximal R&D investment

12



early on. At some point above the turnpike, however, knowledge accumulation is

abruptly terminated, and the policy of decreasing capital brings the process gradu-

ally towards a steady state on the stagnation line below.

A

Stagnation 
line

Turnpike

)(
~

0Ak

A0

k

)(ˆ 0Ak

Asymptotic 
turnpike

k1(A0)

A�~

A�̂

Figure 3: Knowledge-capital processes of economies that violate the growth condi-
tion (4.6). Arrows indicate direction of process evolution.

5 Example

We illustrate the above results for an economy with a Cobb-Douglas production

technology F (K,A) = θKα(AL)1−α, 0 < α < 1. The turnpike specializes to

k̃(A) =
α

1− α
ϕ(A)A,

approaching the asymptotic line

k̃∞(A) =
α

(1− α)Lπ′(0)
A ≡ η̃A.

The stagnation line (4.4) reduces to

k̂(A) = (θα/ρ)
1

1−α A ≡ η̂A.
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The large-A capital rental rate along the turnpike (cf. (4.7)) is

r∞ = f ′(η̃) = θα

(
1− α

α
Lπ′(0)

)1−α

and the growth condition (4.6) (or (4.8)) becomes

ρ < θα

(
1− α

α
Lπ′(0)

)1−α

.

Endowed with sufficient capital, an economy satisfying the growth condition will

reach the turnpike at a most-rapid-R&D rate and evolve along it thereafter. In the

long-run, output, capital, knowledge and consumption all grow exponentially at the

rate g∞ = (r∞−ρ)/σ by devoting to R&D and saving the constant income fractions

s∞ = (1−α)g∞/r∞ and sk∞ = αg∞/r∞, respectively. For a Cobb-Douglas economy

the long-run income shares allocated to R&D and saving turn out to be proportional

to the knowledge and capital shares in the production function.

6 Concluding comments

We extend Weitzman’s (1998) recombinant framework to include endogenous

R&D and saving decisions. Conditions under which long run growth is sustained

are derived. Growing economies admit a turnpike behavior, approaching in the long

run a balanced growth path under which the shares of income allocated to finance

R&D, saving and consumption are constant. Weitzman’s (1998) assumption of a

constant R&D share is thus consistent with optimizing behavior in the long run.

During earlier stages, however, R&D spending varies significantly, and can take the

extreme options of no R&D or maximal R&D.

The necessary growth condition is formulated in terms of the slopes of two

lines defined in the knowledge-capital state space, relating the economy’s under-

lying structure to its long run growth potential. The stagnation line marks the
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eventual states of economies that fail to grow while the turnpike traces the growth

trajectory.

Knowledge, represented by the stock of useful ideas, plays a dual role, augment-

ing labor productivity, on the one hand, and affecting the expected cost of producing

a useful idea, on the other. As knowledge increases, the latter approaches a con-

stant value, hence in the long run growth is driven solely by the labor augmenting

role of knowledge. This state of affairs is manifest by the turnpike approaching a

straight line (the asymptotic turnpike) at large knowledge levels and gives rise to

the balanced, long run growth.

Growth failures occur either because the economy lacks the potential to sustain

long run growth (i.e., violates the growth condition), or when it possesses this po-

tential but lacks sufficient resources. The former situation may be due to poor

social capital such as corruption, excessive bureaucracy or insufficient enforcement

of property rights (Hall and Jones 1999) as well as to inappropriate capacity to

exploit R&D effectively. External capital infusion can embark a poor, potentially-

growing economy on a path of sustained growth but economies that violate the

growth condition require structural changes in order to escape stagnation (Easterly

2003).

The method of analysis, based on the characteristic curves, is quite general and

has been applied to other endogenous growth models (Tsur and Zemel 2004, 2005).

An interesting extension of the present work might account for a competitive R&D

sector, so that knowledge accumulation does not depend entirely on public spending

and regulation policies.
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Appendix

A Proofs of Propositions 1 and 2

Propositions 1 and 2 are based on a series of properties that restrict the behavior

of the optimal (A, k) process in terms of its position relative to the characteristic

curves. These properties are derived below.

Suppressing the time argument for brevity, the current-value Hamiltonian cor-

responding to the per-capita version of (2.8) is written as

H = u(c) + λ[(1− s)F (k,A)− c] + γsF (k,A)/ϕ(A) (A.1)

where λ and γ are the current-value costate variables associated with k and A,

respectively. Necessary conditions for optimum include

u′(c) = λ, (A.2)

s =





1 if γ/ϕ(A) > λ

0 if γ/ϕ(A) < λ

s̃ if γ/ϕ(A) = λ

(A.3)

(s̃ is the singular R&D share defined in (A.8) below),

λ̇− ρλ = −Fk(k, A)
[
λ + s

(
γ

ϕ(A)
− λ

)]
, (A.4)

γ̇ − ργ = −FA(k, A)
[
λ + s

(
γ

ϕ(A)
− λ

)]
+

sγF (k, A)ϕ′(A)
ϕ(A)2

(A.5)

and the transversality conditions

(i) lim
t→∞ kλe−ρt = 0, (ii) lim

t→∞ γe−ρt = 0. (A.6)

Condition (A.3) identifies three possible R&D regimes, namely maximal R&D

(s = 1), no R&D (s = 0) and singular R&D (s = s̃). The optimal policy selects
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among these three regimes at different phases of the planning horizon. Implementing

the singular s̃ policy during a finite time interval is optimal only if the singular

condition λ = γ/ϕ(A) holds during this interval. Taking the time derivative and

using (2.3) and (2.6), we find

λ̇ = γ̇/ϕ(A)− γsF (k,A)ϕ′(A)/ϕ(A)3. (A.7)

Using (A.4), (A.5) and the singular condition λ = γ/ϕ(A), we write (A.7) as

Fk(k,A) = FA(k, A)/ϕ(A), which is recognized as condition (4.1) defining the turn-

pike k̃(A). Thus, the singular s̃ policy can proceed only along the turnpike and is

given, in view of (2.3) and (2.7) by

s̃ = [1− c/y]ϕ(A)/[k̃′(A) + ϕ(A)]. (A.8)

In a steady state, Ȧ = 0 and (2.3) imply s = 0, which, together with λ̇ = 0

and (A.4), gives rise to Fk = ρ, in agreement with condition (4.3) that defines the

stagnation line k̂(A). Thus, if the optimal policy ever approaches a steady state,

this state must fall on the stagnation line. We state these observations for future

reference as

Property 1. (a) The singular policy s̃ can proceed only along the turnpike. (b) An

optimal steady state falls on the stagnation line.

Since Fkk < 0, the condition ρ < Fk holds below k̂(A) (where k < k̂(A)). Thus,

(A.3) and (A.4) imply that λ̇ < 0 below k̂(A). This, together with (A.2) and

u′′(c) < 0, implies that ċ > 0 below the stagnation line. The reverse relations

(λ̇ > 0 and ċ < 0) hold above k̂(A) if s < 1. We summarize these results in

Property 2. The optimal consumption process increases in time below the stagna-

tion line in all R&D regimes and decreases in time above this line under the no-R&D

and singular regimes.
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Define

Λ(k, A) = Fk(k,A)− FA(k, A)/ϕ(A). (A.9)

According to (4.1), the turnpike is defined by Λ(k̃(A), A) = 0. Since Fkk < 0 and

FkA > 0, we find that

Property 3. Λ(k,A) > 0 below the turnpike and Λ(k, A) < 0 above it.

According to (A.3), the R&D policy is determined by the sign of ξ = γ/ϕ(A)−λ.

Using (A.4), (A.5) and (A.9), we find ξ̇ = ρξ + Λ(λ + sξ), which is integrated to

yield

ξ(t)e−ρt = ξ(t0)e−ρt0 +
∫ t

t0

Λ(k(τ), A(τ))[λ(τ) + s(τ)ξ(τ)]e−ρτdτ (A.10)

for any arbitrarily chosen initial time t0.

Since the shadow price λ is positive and sξ ≥ 0, (see A.3), the sign of the

integrand is determined by Λ. Consider now the possibility that ξ(t0) > 0 while the

process evolves below the turnpike (where Λ(k, A) > 0). So long as the turnpike is

not crossed, we see from (A.10) that

ξ(t)e−ρt > ξ(t0)e−ρt0 > 0 (A.11)

hence the R&D fraction remains fixed at the maximum value s = 1. This capital-

decreasing regime, however, cannot cross the turnpike from below and will continue

permanently, which implies that (A.11) violates the transversality conditions (A.6).

It follows that the maximal R&D regime cannot be optimal below the turnpike.

Similar considerations rule out the possibility that the no R&D regime holds indef-

initely above the turnpike. Thus,

Property 4. (a) Maximal R&D (s = 1) can be optimal only above the turnpike.

(b) A steady state (with s = 0) cannot fall above the turnpike.
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In fact, maximal R&D can hold only during a finite period, otherwise the (A, k)

process would cross the turnpike and violate Property 4a. After some time, this

regime must either be replaced by a no-R&D policy above the turnpike or reach the

turnpike (with ξ = 0) and switch to the singular policy.

Without R&D the capital process is monotonic in time because knowledge re-

mains constant and the problem is essentially one-dimensional. Above the turnpike,

the no-R&D policy involves decreasing capital (by consuming in excess of produc-

tion) until the turnpike is reached (because by increasing k this regime would remain

indefinitely above the turnpike, violating (A.6)). Now, ξ must be negative when

the turnpike is reached from above under this policy. Since no other regime holds

below the turnpike, this k-decreasing, constant-A plan must continue and converge

to a steady state on the stagnation line segment below the turnpike.

Initiated below the turnpike, a no-R&D process cannot cross it. Neither can it

switch to another regime below the turnpike. The only two possibilities left are to

converge to a steady state below the turnpike or to reach the turnpike (with ξ = 0)

and switch to the turnpike policy. We summarize these considerations in

Property 5. (a) A maximal R&D policy initiated above the turnpike can proceed

only during a finite time interval, following which it is replaced by either a no-R&D

policy (above the turnpike) or a singular policy (on the turnpike). (b) A no-R&D

policy initiated above the turnpike continues permanently and the ensuing (A, k)

process converges to a steady state on the stagnation line segment below the turnpike.

(c) A no-R&D policy initiated below the turnpike either drives the (A,k) process to a

steady state on the stagnation line (below the turnpike) or is replaced by the singular

policy upon reaching the turnpike.

Once the singular policy has been initiated along the turnpike (with ξ = 0 and
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ξ̇ = 0) we find, using (A.10), that the (A, k) process cannot leave the turnpike with-

out violating Properties 4 or 5 (in other words, the singular policy is trapping). In

view of Property 1, this policy can either converge to a steady state at the intersec-

tion point (Â, k̂) of k̃(A) and k̂(A) (if such a point exists) or grow indefinitely along

the turnpike. The first possibility can be ruled out. Consider a singular policy

confined indefinitely to the turnpike segment above the stagnation line. According

to Property 2, this involves a decreasing consumption process. However, the pol-

icy of staying at the initial state (diverting to consumption the resources allocated

by the singular policy to increase the capital and knowledge stocks) is feasible and

yields a higher utility. Therefore, the singular policy that drives the (A,K) process

permanently above the stagnation line is not optimal. The geometry of the charac-

teristic curves of the present model is such that the turnpike can cross the stagnation

line only from above (see the discussion following (4.5)). It follows that a singular

process converging to (Â, k̂) always lies above k̂(A) and cannot be optimal. These

considerations imply

Property 6. A singular policy cannot be confined to a turnpike segment above the

stagnation line and must proceed indefinitely along the turnpike.

When the growth condition (4.6) is violated, the stagnation line lies below the

turnpike at all knowledge levels. From Property 6 we conclude that

Property 7. (a) When the growth condition (4.6) is violated, the singular policy

cannot be optimal. (b) When the growth condition (4.6) is satisfied, the singular

policy implies sustained growth.

We can now use these properties to derive Propositions 1 and 2. Observe that

capital and knowledge can grow simultaneously only under the singular regime.
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Proof of Proposition 1: Follows from Properties 1, 4a, 5 and 6.

Proof of Proposition 2: When condition (4.6) is violated, Property 7a forbids

the singular policy. According to (A.3) the economy can either engage in maximal

R&D (s = 1) or no R&D (s = 0). Since the first possibility can only be implemented

temporarily (Property 5a) the no-R&D policy must eventually be implemented and,

according to Property 5b-c, the economy approaches a steady state on the stagnation

line. When the growth condition (4.6) holds, the singular policy cannot be ruled

out and the economy bears the potential to sustain long run growth.

B Proof of Proposition 3

The proof is based on the following derivation of the turnpike investment-consumption

decisions. Along the turnpike, capital changes with knowledge according to k̃(A)

of (4.2). Letting a ′ ˜ ′ symbol over any variable represent its turnpike trajectory,

(2.3) is rewritten as

Ȧ = s̃ỹ(A)/ϕ(A), (B.1)

where

ỹ(A) = F (k̃(A), A) = Af(k̃(A)/A) (B.2)

and (2.7) takes the form

˙̃
k = (1− s̃)ỹ(A)− c̃ = k̃′(A)Ȧ = k̃′(A)s̃ỹ(A)/ϕ(A). (B.3)

The turnpike consumption c̃ is thus given by

c̃ = ỹ(A)[1− s̃(ϕ(A) + k̃′(A))/ϕ(A)] (B.4)

which implies

dc̃/ds̃ = −ỹ(A)(ϕ(A) + k̃′(A))/ϕ(A). (B.5)
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From (B.2) we find

ỹ′(A) = FA(k̃(A), A) + Fk(k̃(A), A)k̃′(A) = r̃(A)(ϕ(A) + k̃′(A)), (B.6)

where it is recalled that FA = Fkϕ(A) holds along the turnpike and

r̃(A) = Fk(k̃(A), A). (B.7)

The turnpike policy is the outcome of

Ṽ (A0) = max
{s̃(t)}

∫ ∞

0
u(c̃(t))e−ρtdt (B.8)

subject to (B.1) and (B.4), 0 ≤ s̃ ≤ ϕ(A)/(ϕ(A) + k̃′(A)) and other feasibility

(e.g., non-negativity) constraints, given the endowment A(0) = A0. Let m̃ be the

current-value shadow price of knowledge along the turnpike. The current-value

Hamiltonian is

H̃ = u(c̃) + m̃s̃ỹ(A)/ϕ(A) (B.9)

and necessary conditions for internal optimum include (see B.5)

u′(c̃) =
m̃

ϕ(A) + k̃′(A)
, (B.10)

˙̃m− ρm̃ = −∂H/∂A, which reduces, noting (B.4), (B.6) and (B.10), to

˙̃m
m̃

= ρ− r̃(A) +
s̃ỹ(A)(ϕ′(A) + k̃′′(A))
(ϕ(A) + k̃′(A))ϕ(A)

(B.11)

and the transversality condition (Michel 1982)

lim
t→∞ H̃(t)e−ρt = 0. (B.12)

Taking the time derivative of (B.10) gives

u′′(c̃) ˙̃c(ϕ(A) + k̃′(A)) + u′(c̃)(ϕ′(A) + k̃′′(A))s̃ỹ(A)/ϕ(A) = ˙̃m,
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which reduces, using (B.10) and (B.11), to ˙̃cu′′(c̃)/u′(c̃) = ρ− r̃ or

˙̃c
c̃

=
r̃ − ρ

σ̃
≡ g̃, (B.13)

where σ̃(c̃) = −c̃u′′(c̃)/u′(c̃) is the intertemporal elasticity of substitution.

Define

q(A) = s̃(ϕ(A) + k̃′(A))/ϕ(A) (B.14)

and rewrite (B.4) as

c̃ = ỹ(A)(1− q(A)), (B.15)

so that q is the income share invested in capital and knowledge along the turnpike.

Taking the time derivative of (B.15), using (B.1) and (B.6), we find

˙̃c = ỹr̃q(1− q)− ỹq̇. (B.16)

Dividing (B.16) by (B.15) gives

q̇/(1− q)− r̃q + g̃ = 0. (B.17)

Using (B.13) to rewrite (B.17) as

−dlog(1− q)
dt

+
dlog(c̃)

dt
= r̃q (B.18)

and integrating, recalling that ỹ = c̃/(1− q) (see B.15), we obtain

ỹ(A(t)) = ỹ(A(t0))exp

(∫ t

t0

r̃(τ)q(τ)dτ

)
(B.19)

for any t ≥ t0 ≥ 0. Thus, output grows exponentially when the rate r̃ and the

income share q approach their constant asymptotic values.

To verify that the share q is asymptotically constant, we recall that according

to (4.7) and (4.9), the large A and c limits of r̃ and σ̃ are given by r∞ and σ,

respectively. Noting (B.13), we find that as the economy grows g̃ approaches

g∞ = (r∞ − ρ)/σ, (B.20)
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in agreement with (4.10). We can now return to (B.17) with the constant parameters

r̃ = r∞ and g̃ = g∞ and obtain the general solution along the asymptotic turnpike

q(t) =
1 + ψexp[(r∞ − g∞)t]

r∞/g∞ + ψexp[(r∞ − g∞)t]
,

where ψ is an integration constant. Excluding solutions that diverge at a finite time

and recalling that r∞ > g∞, we find that any ψ 6= 0 gives rise to q → 1, implying

that the long run consumption share shrinks to zero. This solution, however, cannot

be optimal because (B.19) implies that ỹ grows at the rate r∞ while m̃ shrinks at

the rate ρ− r∞, hence the second term of the Hamiltonian (B.9) grows at the rate

ρ, violating (B.12). Thus, ψ = 0, q = g∞/r∞ and (B.19) implies that in the long

run ỹ increases exponentially at the rate g∞. Taking the large A limit of (B.14) we

find

s∞ =
g∞
r∞

(
1

1 + η̃Lπ′(0)

)
(B.21)

and (B.3) gives

sk
∞ =

g∞
r∞

(
η̃Lπ′(0)

1 + η̃Lπ′(0)

)
, (B.22)

verifying (4.11) and (4.12). With k̃(A) approaching k̃∞(A) = η̃A, (B.2) implies

that knowledge and capital are proportional to ỹ and grow at the same rate g∞.

To understand the Skiba behavior when the characteristic curves cross, note,

using Properties 1 and 4b, that there exists a minimal knowledge level A0 ≤ Am ≤ Â

such that when initiated from (Am, k̃(Am)) on the turnpike, the optimal process

must follow the singular policy of unbounded growth. When Am > A0, the critical

level ksk(A0) is obtained by solving the dynamic equations for A, k and λ backward

in time with s = 1, using the initial values A = Am and k = k̃(Am) and the initial

value of λ determined by the condition that the no R&D policy (s = 0) that drives

the system from (Am, k̃(Am)) to a steady state (Am, k̂(Am)) on the stagnation line

is also optimal. The Skiba point ksk(A0) corresponds to the capital stock at the
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(reversed) time when the knowledge endowment A0 is reached, and lies above k̃(A0),

as shown in Figure 2. When Am = A0, the Skiba point lies between k̃(A0) and

k̂(A0), as shown in Figure 1. If the endowment k̂(A0) justifies increasing capital

until the turnpike is reached, followed by singular growth thereafter, set ksk(A0) = 0.
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