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Abstract

The water prices that implement the optimal water policy are derived. These prices
contain the supply cost components and two shadow price terms: one reflecting the in
situ value of natural water and the other representing the scarcity of recycled water.
The former accounts for the scarcity, extraction cost and instream value of natural
water, and has a pronounced effect on the onset and extent of desalination along the
optimal policy. The latter accounts for the scarcity of recycled water, stemming from
the limit imposed on its supply by the sewage discharge, and acts as a tax on users of
recycled water and as a subsidy for domestic and industrial users that contribute to
the supply of recycled water (via the sewage they discharge). Special attention is given
to implications of the public good role of environmental water allocation. An example
based on Israel’s water economy is presented.
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1 Introduction

A water price represents the unit value of water of specific quality at a certain point of

time, hence varies across quality grades and over time. Optimal prices reflect prices along

the optimal water policy. In this work I derive the optimal water prices and study their

role in water regulation. The analysis is carried out within a comprehensive water economy

framework that can accommodate a wide range of real world situations.

Why should we be concerned with calculating water prices? Can’t we just rely on water

markets to provide this information? The main problem with water markets is that they

are far from ubiquitous and, when exist, prone to fail for various reasons, including (i)

common pool externality (when pumping/diverting water from a shared aquifer, reservoir or

stream flow), (ii) returns to scale associated with the water infrastructure (which constitutes

a considerable share of the cost of water allocation and is shared by many users), (iii)

supply uncertainty (due to stochastic precipitation), and (iv) dependence on water ownership

rights, allocation rules and norms. Moreover, water markets take a long time to form and

operate properly in any given circumstance, hence rarely exist in young and/or rapidly

changing water economies. Absent properly operating water markets, water allocation must

be regulated and such regulation is based in one way or another on water prices. In this work

I derive the water prices that implement the optimal water policy, specified in the context

of the representative water economy framework studied by Tsur (2009) and Tsur and Zemel

(2018).

While annual supplies of natural water are on average constant (with a possible moderate

long run trend due to climate change), population growth implies that the per capita supply

of natural water, measured in cubic meter per person per year (CMpy), declines over time.

Dinar and Tsur (2015) estimate that by 2050, roughly 6 billion people in 80 countries are

expected to experience water scarcity (below 1000 CMpy) of which 3 billion will suffer

1



from absolute scarcity (below 500 CMpy). A proper management of water resources, thus,

becomes a critical policy issue in an increasing number of regions.

The analysis is carried out in the context of a representative (prototypical) water economy

that can easily be modified to accommodate many real world situations. A water economy

consists of water sources, water users (sectors), the physical capital (infrastructure) that

allows allocating water from sources to users, and the institutional setting specifying property

rights and feasible allocation rules. Within a given institutional setting, a water policy

determines the allocation of water from each source to each sector and the investment in

capital infrastructure needed to carry out the water allocation, at each point of time. The

purpose of water management is to implement the feasible water policy deemed optimal,

based on well-defined and agreed upon criterion.

For such a comprehensive water economy framework, just formulating the optimal pol-

icy (before any consideration of implementation) becomes a formidable task, as it entails

solving a multi-state intertemporal optimization problem that rapidly becomes analytically

intractable. Tsur and Zemel (2018) greatly simplified the derivation of the optimal policy

by showing that it evolves along two stages: a most-rapid-approach (MRAP) stage followed

by a turnpike stage.1 My aim in this work is to derive the water prices that implement

this optimal policy. Although water economies vary widely in sources (due to climatic and

hydrological variability) and in sectors (due to how populous and developed the economy is),

as well as with respect to the institutional setting, the principles underlying optimal policies

are universal.

Tsur (2009) formulated a water economy similar to the one considered herein and an-

1The term “turnpike” was coined by Dorfman et al. (1958) to represent a common economic situation:
“. . . if origin and destination are far enough apart, it will always pay to get on to the turnpike and cover
distance at the best rate of travel, even if this means adding a little mileage at either end. The best
intermediate capital configuration is one which will grow most rapidly, even if it is not the desired one, it
is temporarily optimal” (p. 311). The term “most rapid approach” (MRAP) was coined by Spence and
Starrett (1975), who considered an MRAP to a constant target. Here the MRAP is to a moving (turnpike)
target (example of an MRAP to a moving target can be found in Tsur and Zemel 2000).
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alyzed the optimal steady state policy. Tsur and Zemel (2018) extended the analysis by

characterizing the full dynamics of the optimal policy and showed that it evolves along the

two aforementioned (MRAP and turnpike) stages. The MRAP stage is concerned with con-

structing the water infrastructure and is typically short (its duration is inversely related to

the investment budget during construction). As soon as the water capital stocks (infras-

tructure) reach their (well-defined) turnpikes, the optimal policy enters the turnpike stage

and evolves along the smooth turnpike trajectories thereafter. Tsur and Zemel (2018) also

showed that the turnpike processes eventually approach a steady state (the same steady

state considered in Tsur 2009). The present effort is concerned with the implementation of

the optimal policy via water pricing.

The water economy is formulated in the next section and the optimal policy (derived

in Tsur and Zemel 2018) is summarized in Section 3. The optimal pricing policy, i.e., the

water prices that implement the optimal policy, is derived in Section 4 and shown to admit

cost recovery (i.e., the proceeds it raises cover the variable and capital supply costs). Special

attention is given to environmental water allocation in light of its public good nature. Section

5 illustrates the analysis in the context of Israel’s water economy and Section 6 concludes.

2 The water economy

Water can be obtained from natural or produced sources. Natural sources, indicated

by the subscript n, include aquifers, lakes, reservoirs and stream flows. Produced sources

include recycled (indicated by the subscript r) and desalinated water (indicated by the sub-

script d). Recycled water is derived from wastewater plants that collect and treat domestic

and industrial sewage, where the latter is indicated by the subscript s. The user sectors are

domestic (households, offices, schools, shops, hospitals etc.), agriculture (irrigation, aquacul-

ture, livestock), industry and environment (ecosystem and ecological support). The sectors
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are indicated by the subscripts D (domestic), I (industry), A (agriculture) and E (environ-

ment).

Each source or sector may include multiple sub-sources or sub-sectors. For example,

natural sources may be partitioned into fresh or saline,2 surface or ground, as well as based

on geographic location. Likewise, agricultural users may be divided into 2 sub-sectors, one

containing growers that cannot use recycled water (e.g., growers of crops for direct human

consumption) and one containing growers that can use water from all sources. To simplify

the exposition, we present the analysis in the context of a water economy containing the 3

sources and 4 sectors mentioned above. The analysis is modular and can easily be extended

to include sub-sources and sub-sectors.

We denote by qij(t) the annual supply from source i to sector j at year t. The annual

water supply from source i is thus

qi◦(t) =
∑

j=A,D,I,E

qij(t), i = n, d, r, (2.1a)

and the annual allocation to sector j is

q◦j(t) =
∑

i=n,r,d

qij(t), j = D,A, I, E. (2.1b)

2.1 Water sources

Distributing source i’s water to the various sectors entails certain activities (pumping,

treating, conveying) and requires capital infrastructure (pumps, pipelines, filters, sewage

treatment facility, desalination plants). We discuss each source in turn.

Natural: Natural water is derived from a finite, replenishable stock Q(t) ∈ [Q, Q̄], which

evolves over time according to

Q̇(t) = R(Q(t))− qn◦(t), (2.2)

2In Israel, natural sources with saline water (chloride concentration above 400 ml/l) is considered a
separate source (see Weinberger et al. 2012).
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where R(·) is a decreasing and concave recharge function and the upper bound Q̄ satis-

fies R(Q̄) = 0. It is straightforward to allow for multiple natural sources (aquifers, lakes,

reservoirs, stream flows). In the interest of simplicity we let the stock Q(t) represent the

aggregate natural water stock and R(Q) is the aggregate recharge.3 The minimal water stock

Q, satisfying

Q(t) ≥ Q, (2.3)

may represent an empty stock, in which case Q = 0, or a threshold stock level below which

undesirable events may occur (e.g., seawater intrusion, analyzed in Tsur and Zemel 1995).

In either case (2.3) implies that when Q(t) = Q the supply of natural water cannot exceed

R(Q).

Preparing the natural water supply qn◦(t) for distribution to end users entails certain ac-

tivities (pumping, filtering, some conveyance) and requires capital infrastructure (pipelines,

pumps, filters). The capital stock available for that purpose at time t is denoted Kn(t).

Recycling: Health and environmental regulations require (in most places) sewage to be

collected, treated and disposed without harming the environment. Consequently, a share β

of the water allocated to domestic and industrial users at time t is collected in the form of

sewage.4 Thus, letting qs◦(t) represent the sewage flow at time t,

qs◦(t) = β(q◦D(t) + q◦I(t)). (2.4)

Sewage collection and treatment require capital infrastructure (treatment plants, pumps,

pipelines, filters), denoted Ks(t).

The treated sewage is available for reuse subject to health regulations that specify feasible

3If irrigation and environmental water contribute to the recharge of underlying aquifers, the recharge
function takes the form R(Q, q◦A, q◦E), where R decreases in Q and increases in both q◦A and q◦E .

4In Israel, β ≈ 0.65 (see Tsur 2015).
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uses for each treatment level (secondary, tertiary with different filtering methods).5 The part

of qs◦(t) that is reused constitutes the supply of recycled water qr◦(t). Thus,

qr◦(t) ≤ qs◦(t). (2.5)

Reusing the treated water requires conveyance from the recycling plants to potential users

and may require further treatment (e.g., from secondary to tertiary). The capital available

at time t for that purpose (conveying the recycled water from treatment facilities to potential

users and possibly additional treatment required by these users) is denoted Kr(t).

The distinction between qs◦ and qr◦ is needed because sewage collection and treatment, on

one hand, and the allocation of the treated water to potential users, on other hand, are two

separate activities. The former is (often) required by health and environmental regulation,

disregarding whether the treated water is reused later on. Reusing the treated water is a

policy decision that depends on the cost of conveying the recycled water from treatment

plants to potential users and on the demand for the recycled water. Thus, Ks(t) includes

only capital needed for sewage treatment required by health and environmental regulation

(see footnote 5), whereas capital needed to convey the treated water to potential users,

as well as treatment beyond the level required by health and environmental regulation (if

demanded by users), is included in Kr(t).

The treatment level (secondary, tertiary) entails restrictions on potential uses of the

recycled water. For example, secondary-treated water may not be allowed to irrigate certain

crops and health regulations may prohibit the allocation of any recycled water to households,

i.e.,

qrD(t) = 0. (2.6)

5Rules for recycled water use vary from country to country. In Israel, arguably the world leader in this
respect, the rules distinguish between two types of recycled water: low quality (secondary treated) whose
use is limited to industrial (e.g., cotton) and tree crops; and good quality (tertiary treated) that can be
used in most crops. These rules are still evolving as new information is accumulated (see discussion of crop
irrigation rules in Chen and Tarchitzky 2018). The current health regulation rules can be found (in Hebrew)
in http://www.sviva.gov.il/subjectsEnv/Streams/SewageStandards/Pages/Milestones.aspx.
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Allowing for different grades of recycled water (secondary, tertiary with different filtering

technologies) requires specifying multiple recycled sources, each with its own capital stock.

Desalination: The supply of desalinated water at time t, qd◦(t), is restricted by the capac-

ity of existing desalination plants, i.e., by the available desalination capital, denoted Kd(t).

We assume that the quality of desalinated water permits its use by all sectors.6

2.2 Water sectors (users)

Distributing water to end users entails certain activities (conveying, filtering) and requires

capital infrastructure dedicated for that purpose. Because water from different sources may

require different conveyance systems (e.g., when mixing recycled and potable water is not

allowed, as is the case in Israel), the water capital (infrastructure) used in distributing

water to the various sectors is source and sector specific. Accordingly, let Kij(t) denote the

capital infrastructure available at time t to distribute water from source i = n, r, d, to sector

j = D, I,A,E.

Under (2.6), domestic users receive water only from natural (after appropriate treatment)

and desalination sources. Industrial users may require water of different quality for different

purposes, e.g., for cooling low quality water may suffice while beverage production requires

drinking-quality water. Accounting for such restrictions entails defining multiple industrial

sub-sectors, each with a separate water quality requirement.

Different agricultural users may be allowed to use water of different quality, e.g., some

edible crops should not be irrigated with secondary-level recycled water (see Chen and Tar-

chitzky 2018), and such restrictions can be incorporated by defining multiple agricultural

sub-sectors separated by their water quality restrictions.7

6This is indeed the situation in Israel, where currently desalinated water amounts to about a half of
natural water supply and 65 percent of domestic water consumption.

7In the presence of agricultural sub-sectors, based, e.g., on the quality of irrigated water, each sub-sector
has its own capital stock.

7



Environmental water can appear in the form of conveyed or instream. The former entails

conveying water from source i = n, r, d, to support ecosystems and environmental sites and

its allocations are the qiE(t)’s defined above. These allocations require activities (conveyance,

pumping, filtering) and the dedicated capital KiE(t), i = n, r, d. Instream water allocation

amounts to avoiding (or reducing) water diversions and/or extraction from natural sources,

hence entails no cost. The value of instream water, it will be shown below, is embedded in

the in situ value of the the natural water stock Q.

2.3 Supply costs

Water supply entails variable and fixed costs. The former is associated with the cost of

variable inputs (i.e., inputs that vary with the supply flow), such as temporary labor, energy

and materials; the latter consists mainly of the capital cost but includes also costs of inputs

that cannot be easily changed, such as tenured labor and management overheads. Both of

these components vary spatially and temporally (see examples in Renzetti 1999, Harou et al.

2009, Allen et al. 2014).

Capital cost: The annual supply from source i, qi◦(t), is restricted by source i’s capital

stock Ki(t) according to

qi◦(t) ≤ γiKi(t), i = n, r, d, s, (2.7a)

where the γi’s are capital utilization parameters, indicating the maximal annual supply per

unit capital Ki.
8 Similarly, the allocation of water from source i to sector j at time t, qij(t),

is restricted by the capital infrastructure Kij(t) according to

qij(t) ≤ γijKij(t), i = n, r, d, j = D, I,A,E, (2.7b)

8Including the sewage flow qs◦(t) in the list of sources simplifies notation. Notice that qs◦(t), which is the
outcome of domestic and industrial allocations (cf. (2.4)), is the source of recycled water (cf. (2.5)).
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where the γij’s are capital utilization parameters, indicating the maximal annual supply from

source i to sector j per unit Kij.

The capital stocks Ki(t) and Kij(t) evolve in time according to

K̇i(t) = xi(t)− δKi(t), i = n, r, d, s, (2.8a)

K̇ij(t) = xij(t)− δKij(t), i = n, r, d, j = D, I,A,E, (2.8b)

where xi(t) and xij represent investment rates and δ is a constant depreciation rate.9 Ag-

gregate investment at time t, denoted X(t), is bounded by an exogenous investment budget

x̄:

X(t) ≡
∑

i=n,r,d,s

xi(t) +
∑

i=n,r,d

∑
j=D,I,A,E

xij(t) ≤ x̄ (2.9)

for all t ≥ 0.

The annual cost of capital consists of the total investment X(t). We shall see below that

this cost equals the finance (i.e., interest payments) and depreciation costs associated with

the aggregate capital stock.

Variable costs: The variable cost associated with qi◦, i = n, r, d, s, are represented by the

increasing and convex functions Ci(qi◦), i = n, r, d, s. For natural water (i = n), Cn(·) may

depend also on the stock of natural water Q, in which case Cn(Q, qn◦) is non-increasing and

concave in Q, e.g., Cn(Q, qn◦) = cn(Q)qn◦, where the unit extraction cost function cn(Q) is

non-increasing and convex. Likewise the variable costs associated with distributing source

i’s water to sector j are represented by Cij(qij(t)), i = n, r, d, j = D, I,A,E. The variable

cost associated with the allocation q(t) = {qi,j(t), i = n, r, d, j = D, I,A,E} is therefore

C(Q(t), q(t) = Cn(Q(t), qn◦(t)) +
∑

i=r,d,s

Ci(qi◦(t)) +
∑

i=n,r,d

∑
j=D,I,A,E

Cij(qij(t)), (2.10)

where it is recalled that the sewage flow qs◦(t) is defined in (2.4).

9For simplicity, all capital stocks are assumed to depreciate at the same rate δ.
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Let

ci(qi◦) = ∂Ci(qi◦)/∂qi◦, i = n, r, d, s, cij(qij) = ∂Cj(qij)/∂qij, i = n, r, d, j = D, I,A,E,

(2.11)

where cn(Q, qn◦) and cn(qn◦) are used interchangeably. Differentiating C(Q(t), q(t)) with

respect to qij(t), noting (2.4), gives the following marginal costs of water allocation from

source i to sector j:

ci(qi◦(t)) + cij(qij(t)) + βcs(qs◦(t)), i = n, r, d, j = D, I, (2.12a)

ci(qi◦(t)) + cij(qij(t)), i = n, r, d, j = A,E. (2.12b)

2.4 Water demand

Sector j’s annual (inverse) demand for water is denoted Dj(q◦j), j = D,A, I, E.10 This

curve measures the annual quantity of water demanded by sector j at any water price and

can be interpreted as the price sector j’s users are willing to pay for an additional (marginal)

unit of water when they already consume q◦j. This interpretation allows defining the demand

for conveyed environmental water DE(q◦E), similar to the other sectors, as the willingness

to pay (WTP) for an additional water unit at any level of (conveyed) environmental water

supply. However, while the other sectors’ demands can be estimated by price-quantity data,

the public good nature of environmental water eliminates this possibility and estimating the

demand DE(·) requires indirect, WTP elicitation methods.11

10It is assumed that the minimal annual water flow required for basic human needs is provided at a nominal
or no cost. The domestic sector’s demand refers to annual flows above this subsistent level.

11There is a large literature on sectoral water demands. Examples of agricultural water demand include
Just et al. (1983), Moore et al. (1994), Howitt (1995), Mundlak (2001), Tsur et al. (2004), Schoengold et al.
(2006), Scheierling et al. (2006); examples of urban and industrial demands include Baumann et al. (1997),
Renzetti (2002, 2015), Worthington and Hoffmann (2006), Olmstead et al. (2007), House-Peters and Chang
(2011), Baerenklau et al. (2014), Smith and Zhao (2015); examples of environmental water demand include
Dudley and Scott (1997), Loomis et al. (2000), Pimentel et al. (2004), Fleischer and Tsur (2009), Thiene
and Tsur (2013), Koundouri and Davila (2015), Koundouri et al. (2017) and references they cite.
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The annual gross surplus of sector j generated by q◦j (before subtracting the cost of water

supply) is the area underneath the demand curve to the left of q◦j:

Bj(q◦j) =

∫ q◦j

0

Dj(s)ds, j = D, I,A,E. (2.13)

The surplus BD(q◦D) represents households’s benefit associated with the direct use of water

(drinking, cooking, hygiene, gardening). In addition, households enjoy the environmental

benefit BE(q◦E) generated by the conveyed environmental water allocation and the benefit

associated with the instream water use provided by the natural water stock Q. The latter

(instream) benefit is represented by the nondecreasing and concave function Bis
E (Q). The

annual benefit of all sectors (before subtracting the supply cost) is therefore

B(Q(t), q(t)) =
∑

j=D,I,A,E

Bj(q◦j(t)) +Bis
E (Q(t)). (2.14)

Subtracting the variable costs of supply and the investment expenditures gives the net

(annual) benefit flow:

B(Q(t), q(t))− C(Q(t), q(t))−X(t)

where B(Q(t), q(t)), C(Q(t), q(t)) and X(t) are defined in (2.14), (2.10) and (2.9), respec-

tively, and q(t) = {qij(t), i = n, r, d, j = D, I,A,E} and x(t) = {xi, i = n, r, d, s;xij(t), i =

n, r, d, j = D, I,A,E} represent the water allocations and investments at time t.

2.5 Water policy

A water policy consists of the water allocations q(t) and investment rates x(t) throughout

the (indefinite) planning horizon t ≥ 0. Given the initial natural water stock Q(0) and

capital stocks K(0) = {Ki(0), i = n, r, d, s, Kij(t), i = n, r, d, j = D, I,A,E}, a water policy

determines the evolution of Q(t) and K(t) via (2.2) and (2.8), respectively, and generates

the payoff ∫ ∞

0

(B(Q(t), q(t))− C(Q(t), q(t))−X(t)) e−ρtdt, (2.15)
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where ρ is the time rate of discount, reflecting time preferences as well as the cost of capital.

Noting (2.8) and (2.9), the term involving X(t) in (2.15) can be expressed as∫ ∞

0

X(t)e−ρtdt =

∫ ∞

0

( ∑
i=n,r,d,s

(
K̇i(t) + δKi(t)

)
+
∑

i=n,r,d

∑
j=D,I,A,E

(
K̇ij(t) + δ,Kij(t)

))
e−ρtdt.

Integrating by parts the right-hand side gives∫ ∞

0

X(t)e−ρtdt =

∫ ∞

0

(ρ+ δ)K(t)e−ρtdt+K(0), (2.16)

where

K(t) =
∑

i=n,r,d,s

Ki(t) +
∑

i=n,r,d

∑
j=D,I,A,E

Kij(t) (2.17)

is the total water capital (infrastructure) at time t and K(0) is its initial level. The term

(ρ + δ)K represents the annual cost on a capital stock worth K, consisting of the interest

(ρK) and depreciation (δK) costs. In view of (2.16), the payoff (2.15) can be expressed,

ignoring the (exogenously given) initial total capital K(0), as∫ ∞

0

[B(Q(t), q(t))− C(Q(t), q(t))− (ρ+ δ)K(t)] e−ρtdt. (2.18)

3 Optimal policy

The optimal policy is the feasible {q(t), x(t), t ≥ 0} that maximize (2.18) subject to the

state dynamics (2.2) and (2.8), given the initial natural water stock Q(0) and capital stocks

K(0), where feasibility entails conditions (2.3), (2.5), (2.6), (2.7), (2.9) and nonnegativity of

q(t) and x(t). The multiple states associated with the elements of K(t) complicate analytical

characterization of the optimal policy. Tsur and Zemel (2018) simplify this characterization

by showing that it can be broken into two subproblems, each containing the natural water

stock Q(t) as a single state: the first subproblem ignores the investment budget constraint

(2.9) and the second accounts for it. The optimal policy corresponding to the first and sec-

ond subproblems are called turnpike and most-rapid-approach (MRAP), respectively. The

12



optimal policy begins with the MRAP policy, during which the water infrastructure is con-

structed and the investment budget x̄ is fully utilized (i.e., constraint (2.9) holds as equality)

until the turnpike policy becomes feasible, at which time the optimal policy switches to the

turnpike policy and evolves along it thereafter, eventually converging to a steady state. I

summarize below the optimal policy, starting with the turnpike.

3.1 The turnpike policy

Suppose that the infrastructure configuration K(t) = {Ki(t), i = n, r, d, s, Kij(t), i =

n, r, d, j = D, I,A,E} can be freely chosen. The problem then is to choose the feasible q(t)

and K(t) that maximize (2.18) subject to (2.2) given Q(0), where feasibility entails (2.3),

(2.5), (2.6), (2.7) and nonnegativity of q(t) and K(t). The corresponding optimal policy and

processes are called turnpike and denoted with a “tilde” overhead, e.g., q̃(t), K̃(t) and Q̃(t).

We note that the turnpike processes depend on the initial natural water stock and the latter

is added as an argument when needed, e.g., K̃(t;Q) represents the turnpike capital process

that departs from the initial natural water stock Q(0) = Q.

Observing (2.18), it is seen that treating the capital stocks as decision variables, the

K̃(t) = {K̃i(t), K̃ij(t)} are the capital stocks that would have been chosen if it were possible

to rent capital at the (competitive) rental rate ρ + δ. In view of (2.7), supplying one water

unit from source i to sector j requires at least 1/γi units of Ki and 1/γij units of Kij. In

addition, each cubic meter allocated to domestic or industrial users (j = D, I) requires also

the sewage capital β(1/γs) needed to collect and treat the ensuing domestic and industrial

sewage (cf. (2.4)). Under the capital rental rate ρ + δ, the capital costs per unit water

supplied from source i = n, r, d, to sector j are therefore

µi + µij + βµs, j = D, I, (3.1a)

µi + µij, j = A,E, (3.1b)
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where

µi ≡ (ρ+ δ)/γi, i = n, r, d, s, (3.2a)

µij ≡ (ρ+ δ)/γij, i = n, r, d, j = D, I,A,E, (3.2b)

are the unit capital costs (i.e., annual cost of capital per unit water).

The marginal costs are specified in (2.12). Additional costs are associated with the

shadow (scarcity) price of the natural water stock, denoted θ̃(t), and the shadow price of

recycled water, associated with constraint (2.5), denoted ξ̃(t). The former applies only to

water derived from natural sources (i.e., qnj); the latter applies as a price (tax) for consumers

of recycled water and as a subsidy for contributors to recycled water (domestic and industrial

users). We now list the necessary conditions characterizing the turnpike policy (see appendix

for derivation).

Natural water allocated to domestic or industrial users (q̃nj, j = D, I):

Dj(q̃◦j(t)) ≤ cn(Q̃(t), q̃n◦(t))+cnj(q̃nj(t))+µn+µnj+β[cs(q̃s◦(t))+µs]+ θ̃(t)−βξ̃(t), (3.3a)

equality holding if q̃nj(t) > 0, j = D, I. Natural water allocated to agricultural users or the

environment (q̃nj, j = A,E):

Dj(q̃◦j(t)) ≤ cn(Q̃(t), q̃n◦(t)) + cnj(q̃nj(t)) + µn + µnj + θ̃(t), (3.3b)

equality holding if q̃nj(t) > 0, j = A,E. Recycled water allocated to industrial users (q̃rI):
12

DI(q̃◦I(t)) ≤ cr(q̃r◦(t)) + crI(q̃rI(t)) + µr + µrI + β[cs(q̃s◦(t)) + µs] + ξ̃(t)(1− β), (3.4a)

equality holding if q̃rI(t) > 0. Recycled water allocated to agricultural users or the environ-

ment (q̃rj, j = A,E):

Dj(q̃◦j(t)) ≤ cr(q̃r◦(t)) + crj(q̃rj(t)) + µr + µrj + ξ̃(t), (3.4b)

12Assuming (2.6), recycled water to households is not allowed, while industrial users can use recycled
water. If some industrial users can use only drinking quality water, an additional sector consisting of this
industrial sub-sector should be defined.
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equality holding if q̃rj(t) > 0, j = A,E. Desalinated water allocated to domestic or industrial

users (q̃dj, j = D, I):

Dj(q̃◦j(t)) ≤ cd(q̃d◦(t)) + cdj(q̃dj(t)) + µd + µdj + β[cs(q̃s◦(t)) + µs]− βξ̃(t), (3.5a)

equality holding if q̃d j(t) > 0, j = D, I. Desalinated water allocated to agricultural users or

the environment (q̃dj, j = A,E):

Dj(q̃◦j(t)) ≤ cd(q̃d◦(t)) + cdj(q̃dj(t)) + µd + µdj, (3.5b)

equality holding if q̃d j(t) > 0, j = A,E.

The shadow price of natural water, θ̃(t), evolves in time according to

˙̃θ(t))− ρθ̃(t) = CnQ(Q̃(t), q̃n◦(t))−Bis ′
E (Q̃(t))− θ̃(t)R ′(Q̃(t))− ϑ̃(t), (3.6)

where CnQ ≡ ∂Cn/∂Q,13 R ′ ≡ ∂R/∂Q, Bis ′
E ≡ ∂Bis

E/∂Q and ϑ̃(t) is the scarcity price of

natural water, i.e., the shadow price of constraint (2.3). The multipliers ξ̃(t) and ϑ̃(t) satisfy

the complementary slackness conditions

ξ̃(t)[q̃s◦(t)− q̃r◦(t)] = 0, (3.7a)

and

ϑ̃(t)[Q̃(t)−Q] = 0. (3.7b)

Finally, no idle capital is allowed along the turnpike, i.e., the capital constraints (2.7) are

binding, implying

K̃i(t) = q̃i◦(t)/γi, i = n, r, d, s, (3.8a)

K̃ij(t) = q̃ij(t)/γij, i = n, r, d, j = D, I,A,E. (3.8b)

Conditions (3.3)-(3.5) are in essence demand-equals-supply conditions, with demand on

the left-hand sides and unit supply cost on the right-hand sides. Let us denote the the unit

13E.g., if Cn(Q, qn◦) = cn(Q)qn◦, with cn(·) a non-increasing unit cost function, then CnQ = c ′
n(Q)qn◦.
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supply costs along the turnpike, i.e., right-hand sides of (3.3)-(3.5), by p̃ij(t). We repeat

these unit supply costs and identify their components:

p̃nj(t) = cn(Q̃(t), q̃n◦(t))︸ ︷︷ ︸
mar cost n

+ cnj(q̃nj(t))︸ ︷︷ ︸
mar cost nj

+ µn︸︷︷︸
cap cost Kn

+ µnj︸︷︷︸
cap cost Knj

+ βcs(q̃s◦(t))︸ ︷︷ ︸
mar cost s

+ βµs︸︷︷︸
cap cost Ks

+

θ̃(t)︸︷︷︸
shadow price Q

− βξ̃(t)︸ ︷︷ ︸
rec subsidy

, j = D, I; (3.9a)

p̃nj(t) = cn(Q̃(t), q̃n◦(t)))︸ ︷︷ ︸
mar cost n

+ cnj(q̃nj(t))︸ ︷︷ ︸
mar cost nj

+ µn︸︷︷︸
cap cost Kn

+ µnj︸︷︷︸
cap cost Knj

+ θ̃(t)︸︷︷︸
shadow price Q

, j = A,E;

(3.9b)

p̃rI(t) = cr(q̃r◦(t))︸ ︷︷ ︸
mar cost r

+ crI(q̃rI(t))︸ ︷︷ ︸
mar cost rI

+ µr︸︷︷︸
cap cost Kr

+ µrI︸︷︷︸
cap cost KrI

+ βcs(q̃s◦(t))︸ ︷︷ ︸
mar cost s

+ βµs︸︷︷︸
cap cost Ks

+

ξ(t)(1− β)︸ ︷︷ ︸
rec tax-subsidy

; (3.10a)

p̃rj(t) = cr(q̃r◦(t))︸ ︷︷ ︸
mar cost r

+ crj(q̃rj(t))︸ ︷︷ ︸
mar cost rj

+ µr︸︷︷︸
cap cost Kr

+ µrj︸︷︷︸
cap cost Krj

+ ξ̃(t)︸︷︷︸
rec tax

, j = A,E; (3.10b)

p̃dj(t) = cd(q̃d◦(t))︸ ︷︷ ︸
mar cost d

+ cdj(q̃dj(t))︸ ︷︷ ︸
mar cost dj

+ µd︸︷︷︸
cap cost Kd

+ µdj︸︷︷︸
cap cost Kdj

+ βcs(q̃s◦(t))︸ ︷︷ ︸
mar cost s

+ βµs︸︷︷︸
cap cost Ks

−

ξ̃(t)β︸ ︷︷ ︸
rec subsidy

, j = D, I; (3.11a)

p̃dj(t) = cd(q̃d◦(t))︸ ︷︷ ︸
mar cost d

+ cdj(q̃dj(t))︸ ︷︷ ︸
mar cost dj

+ µd︸︷︷︸
cap cost Kd

+ µdj︸︷︷︸
cap cost Kdj

, j = A,E. (3.11b)

In terms of the above p̃ij(t), Conditions (3.3)-(3.5) can be succinctly rendered as

Dj(q̃◦j(t)) ≤ p̃ij(t) equality holding if q̃ij(t) > 0, i = n, r, d, j = D, I,A,E. (3.12)

A steady-state detour

The turnpike processes change over time as long as the natural water stock Q̃(t) changes.

If Q̃(t) remains constant, all turnpike processes stay put as well. This happens to be the
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case if Q̃(t) converges to a steady state. Because the turnpike problem is a single-state,

infinite horizon and autonomous, the turnpike processes eventually converge to a steady (see

Tsur and Zemel 2014). We denote steady state values with a hat “ ˆ ” overhead notation.

Condition (2.2) implies

R(Q̂) = q̂n◦ (3.13)

and condition (3.6) specializes to14

θ̂ =
ϑ̂− c ′n(Q̂)R(Q̂) +Bis ′

E (Q̂)

ρ−R′(Q̂)
. (3.14)

Conditions (3.12) specialize in a steady state to

Dj(q̂◦j) ≤ p̂ij equality holding if q̂ij > 0, i = n, r, d, j = D, I,A,E, (3.15)

where q̂rD = 0 if (2.6) is imposed, and (3.7) become

ξ̂[q̂s◦ − q̂r◦] = 0, (3.16a)

ϑ̂(Q̂−Q) = 0, (3.16b)

where q̂s◦ follows form (2.4).

Equation (3.14) illuminates the three components comprising the shadow price of nat-

ural water: scarcity, extraction cost and instream value. The scarcity cost component is

represented by ϑ̂ – the shadow price of the Q(t) ≥ Q constraint. This term is positive when

the steady state falls on the lower bound Q, in which case extraction, q̂n◦, cannot exceed

the recharge R(Q̂) = R(Q) and the cost of this constraint is embedded in ϑ̂. The extraction

cost component is represented by the −c ′n(Q̂)R(Q̂) term, which is nonnegative because c(Q)

is non-increasing. Finally, the instream value of Q affects its shadow price via the marginal

instream benefit term Bis ′
E (Q̂). When positive, this term increases θ̂, rendering natural water

more expensive, thereby reducing diversion and/or pumping from natural sources.

14We assume that Cn(Q, qn◦) = cn(Q)qn◦, so CnQ(Q, qn◦) ≡ ∂Cn(Q, qn◦)/∂Q = c ′
n(Q)qn◦.
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Equations (3.13)-(3.16) provide 16 conditions (including (2.6) if q̂rD(t) = 0 is imposed)

to solve for q̂ = {q̂ij, i = n, r, d, j = D, I,A,E}, Q̂, θ̂, ξ̂ and ϑ̂ as follows:

Property 1 (Steady state). (i) if equations (3.15)-(3.16a) admit nonnegative solutions for

q̂, Q̂, θ̂ and ξ̂ with Q̂ > Q and ϑ̂ = 0, then these are the steady state values. (ii) If no such

solutions exist, then Q̂ = Q and q̂, ξ̂ and ϑ̂ are the nonnegative solutions of (3.15)-(3.16).

(iii) Noting (3.8), the steady state capital stocks are

K̂i = q̂i◦/γi, i = n, r, d, s, (3.17a)

K̂ij = q̂ij/γij, i = n, r, d, j = D, I,A,E. (3.17b)

Back to the turnpike

The turnpike policy can now be characterized as follows:

Property 2 (Turnpike). Given Q̃(t) and θ̃(t), the turnpike allocations q̃(t) and the shadow

price of recycled water ξ̃(t) solve (3.12) and (3.7a). The state and costate processes, Q̃(t)

and θ̃(t), are solved from (2.2), (3.6) and (3.7b), given the initial Q̃(0) = Q(0) and boundary

(long run) values Q̂ and θ̂, specified in Property 1. The ensuing capital processes, K̃(t), are

specified in (3.8).

Under mild smoothness conditions (see Tsur and Zemel 2018), the K̃i(t) and K̃ij(t) are

differentiable in time and the corresponding turnpike investment processes

x̃i(t) =
˙̃Ki(t) + δK̃i(t), i = n, r, d, s, (3.18a)

x̃ij(t) =
˙̃Kij(t) + δK̃ij(t), i = n, r, d, j = D, I,A,E, (3.18b)

induced by (2.8), are well defined. The turnpike capital stocks K̃i(t) and K̃ij(t)} can be

viewed as driven (constructed) by the investments x̃i(t) and x̃ij(t). It is assumed that the

investment budget x̄ can support the turnpike investments at all times, i.e.,

X̃(t) ≡
∑

i=n,r,d,s

x̃i(t) +
∑

i=n,r,d

∑
j=D,I,A,E

x̃ij(t) < x̄, t ≥ 0. (3.19)
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3.2 The MRAP (infrastructure construction) policy

The turnpike policy departs from the initial capital stocks

K̃(0) = {K̃i(0), i = n, r, d, s, K̃ij(0), i = n, r, d, j = D, I,A,E},

defined in (3.8) in terms of the initial turnpike water allocations q̃(0) = {q̃ij(0), i = n, r, d, j =

D, I,A,E}. In actual practice, the (actual) initial capital K(0) is what it is and may differ

from K̃(0). If the total initial capital K(0) =
∑

i=n,r,d,sKi(0) +
∑

i=n,r,d

∑
j=D,I,A,E Kij(0)

falls below K̃(0) =
∑

i=n,r,d,s K̃i(0) +
∑

i=n,r,d

∑
j=D,I,A,E K̃ij(0), then initially the turnpike

policy is not feasible. In this cases, it is optimal to construct the capital infrastructure

as rapidly as possible, by utilizing the entire investment budget, until the turnpike policy

becomes feasible, at which time the optimal policy switches to the turnpike policy and

evolves along it thereafter. If the investment budget x̄ is unlimited, it is possible to increase

the capital stocks to the desired, turnpike configuration instantly. If, however, x̄ is finite,

then building the capital infrastructure takes time. The infrastructure construction period

(policy) is denoted the MRAP period (policy). The name stems from the property that the

investment budget is fully utilized during this period, hence the approach to the turnpike

is as rapidly as possible. The terms “MRAP policy” and “construction policy” are used

interchangeably.

The MRAP policy differs from the turnpike policy in that the total capital stock K(t),

defined in (2.17), is restricted not to exceed the maximal feasible total capital stock K̄(t)

obtained under the maximal total investment x̄. Noting (2.8), the total capital K(t) evolves

in time according to

K̇(t) = X(t)− δK(t) (3.20)

where X(t) is the total investment (cf. (2.9)). The frontier process K̄(t), obtained under

X(t) = x̄, satisfies

˙̄K(t) = x̄− δK̄(t), (3.21)
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implying that K̄(t) evolves in time according to

K̄(t) =
x̄

δ

(
1− e−δt

)
+K(0)e−δt, (3.22)

where K(0) is the (actual) initial total capital. Clearly, any feasible capital process satisfies

K(t) ≤ K̄(t) (3.23)

The restricted turnpike problem is obtained by adding constraint (3.23) to the turnpike

problem. The corresponding optimal policy, denoted the restricted turnpike policy, thus,

entails finding the feasible q(t) and K(t) that maximize (2.18) subject to (2.2) given Q(0),

where feasibility entails (2.3), (2.5), (2.6), (2.7), nonnegativity of q(t) and K(t) and (3.23).

The optimal processes corresponding to the restricted turnpike problem are called the re-

stricted turnpike processes and denoted with a “double-tilde” overhead, e.g., ˜̃Q(t), ˜̃q(t) and

˜̃K(t). Because the restricted turnpike problem is, as the name suggests, a restricted version

of the turnpike problem, it follows that:

Claim 1. If the turnpike policy is feasible for the restricted turnpike problem, it must be

optimal for the restricted turnpike problem.

The MRAP policy coincides with the restricted turnpike policy when constraint (3.23)

is binding, i.e., while the entire investment budget is utilized. Formulating this policy, thus,

requires identifying the period during which the constraint is binding. To that end, we use

the property that the turnpike problem is infinite-horizon and autonomous to express the

turnpike processes as functions of the (natural water) state (see, e.g., Leonard and Long

1992, pp. 289-294), i.e., the turnpike water allocations and capital stocks at time t when

the natural water stock is Q(t) are represented by q̃(Q(t)) and K̃(Q(t)) and the total capital

stock is

K̃(Q(t)) =
∑

i=n,r,d,s

K̃i(Q(t)) +
∑

i=n,r,d

∑
j=D,I,A,E

K̃ij(Q(t)).
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Likewise, the shadow price of the natural water stock at time t is expressed as θ̃(Q(t)).

Clearly, if K̃( ˜̃Q(t0)) ≤ K̄(t0) at some time t0, then K̃( ˜̃Q(t)) ≤ K̄(t) for all t ≥ t0. This is

so because, noting (3.20)-(3.21), K̃( ˜̃Q(t)) is driven by the total turnpike investments whereas

the frontier process K̄(t) is driven by the investment budget x̄ and the latter exceeds the

former (cf. (3.19)). Thus, if K̃(Q(0)) ≤ K̄(0) = K(0), then (3.19) implies that constraint

(3.23) is never binding and the turnpike policy is feasible from the outset, hence, according to

Claim 1, is also optimal. In this case, the MRAP (construction) policy is never implemented.

If K(0) < K̃(Q(0)), the turnpike policy is initially not feasible. In this case, the MRAP

policy is implemented until the turnpike policy becomes feasible, at which time the optimal

policy switches to the turnpike polity. During the construction (MRAP) period, the total

capital process evolves along K̄(t), specified in (3.22). The turnpike policy becomes feasible

at time τ , defined as the time at which K̄(t) reaches the total capital associated with the

turnpike policy that departs from the current natural water stock, i.e., τ satisfies

K̄(τ) = K̃( ˜̃Q(τ)). (3.24)

We summarize the above discussion in:

Property 3. (i) If K(0) ≥ K̃(Q(0)), the turnpike policy is feasible, hence optimal, from the

outset. (ii) If K(0) < K̃(Q(0)), the turnpike policy is initially not feasible. In this case,

the MRAP policy, under which total investment equals the budget x̄, is implemented until

time τ , at which time the optimal policy switches to the turnpike policy that departs form the

natural water stock ˜̃Q(τ) and proceeds along it thereafter.

It remains to characterize the MRAP policy, i.e., the optimal construction policy during

t ∈ [0, τ), while constraint (3.23) is binding and the turnpike policy is infeasible. To that

end, let us define {
mi(t) = µi + η(t)/γi, i = n, r, d, s,

mij(t) = µij + η(t)/γij, i = n, r, d, j = D, I,A,E,
(3.25)

21



where the unit capital costs µi and µij are specified in (3.2) and η(t) ≥ 0 is the shadow

price of constraint (3.23). Let ˜̃pij(t), i = n, r, d, j = D, I,A,E, be the p̃ij(t), defined in

(3.9)-(3.11), with mi(t) and mij(t) substituting µi and µij, respectively. Replacing ˜̃pij(t) for

p̃ij(t) in (3.12) gives the following necessary conditions for the ˜̃q(t) processes:

Dj(˜̃q◦j(t)) ≤ ˜̃pij(t) equality holding if ˜̃qij(t) > 0, i = n, r, d, j = D, I,A,E. (3.26)

Likewise, ˜̃θ(t) replaces θ̃(t) in (3.6) and ˜̃ξ(t), ˜̃ϑ(t) replace ˜̃ξ(t), ϑ̃(t) in (3.7). The MRAP

policy can now be characterized as follows (see proof in the appendix):

Property 4. (i) During t ∈ [0, τ ], the ˜̃q(t) and ˜̃ξ(t) processes solve (3.26) and (3.7a) given

˜̃Q(t) and ˜̃θ(t), with η(t) ≥ 0 chosen such that

˜̃K(t) = K̄(t), t ∈ [0, τ ], (3.27)

where

˜̃Ki(t) = ˜̃qi◦(t)/γi, i = n, r, d, s, (3.28a)

˜̃Kij(t) = ˜̃qij(t)/γij, i = n, r, d, j = D, I,A,E, (3.28b)

˜̃K(t) =
∑

i=n,r,d,s
˜̃Ki(t) +

∑
i=n,r,d

∑
j=D,I,A,E

˜̃Kij(t), and τ satisfies (3.24). (ii) The state

and costate processes, ˜̃Q(t) and ˜̃θ(t), t ∈ [0, τ ], solve (2.2) and (3.6) given the boundary

conditions ˜̃Q(0) = Q(0), ˜̃Q(τ) satisfying (3.24), ˜̃θ(τ) satisfying

˜̃θ(τ) = θ̃( ˜̃Q(τ)) (3.29)

and ˜̃K(τ) = K̄(τ).

Under smoothness conditions (see Tsur and Zemel 2018), the ˜̃Ki(t) and
˜̃Kij(t) processes

are differentiable in time, hence can be viewed as driven by the well-defined MRAP invest-

ments

˜̃xi(t) = d ˜̃Ki(t)/dt+ δ ˜̃Ki(t), i = n, r, d, s, (3.30a)
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x̃ij(t) = d ˜̃Kij(t)/dt+ δ ˜̃Kij(t), i = n, r, d, j = D, I,A,E. (3.30b)

The ˜̃xi(t) and ˜̃xij(t) drive the MRAP capital stocks ˜̃Ki(t) and ˜̃Kij(t) during t ∈ [0, τ ] and

satisfy

˜̃X(t) =
∑

i=n,r,d,s

˜̃xi(t) +
∑

i=n,r,d

∑
j=D,I,A,E

˜̃xij(t) = x̄, t ∈ [0, τ). (3.31)

We summarize the MRAP policy in:

Property 5 (MRAP). The MRAP policy consists of {˜̃q(t), ˜̃x(t), t ∈ [0, τ ]} and the asso-

ciated state processes { ˜̃Q(t), ˜̃K(t), t ∈ [0, τ ]}, where τ and { ˜̃Q(t), ˜̃q(t), ˜̃K(t), t ∈ [0, τ ]} are

characterized in Property 4, and ˜̃x(t) is defined in (3.30).

We note that the length of the MRAP period, τ , is inversely related to the investment

budget x̄ and can be made arbitrarily short by appropriately increasing x̄. We note also that

such an increase in the investment budget can be temporary, as it need only apply during the

MRAP (construction) period – up to time τ . From time τ onward, any investment budget

x̄ that allows the turnpike investment policy, i.e., that satisfies (3.19), suffices.

3.3 The optimal policy

Because the MRAP capital processes are subject to choice, the initial configuration ˜̃K(0)

may differ from the actual initial capital stocks K(0). However, (3.23) ensures that the total

initial capital satisfies

˜̃K(0) ≤ K(0),

where K(0) is the actual total capital stock. Suppose that at the initial time it is possible to

reshuffle capital between the different stocks without changing the total capital stock. Then,

it is possible to realize the initial capital configuration ˜̃K(0), under which the MRAP policy

{˜̃q(t), ˜̃x(t), t ∈ [0, τ ]} is feasible. The optimal policy in this case is summarized in:
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Property 6. Under the “capital rearrangement” assumption, the optimal policy evolves along

{q∗(t), x∗(t)} =

{
{˜̃q(t), ˜̃x(t)}, t ∈ [0, τ)

{q̃(t), x̃(t)}, t ≥ τ
(3.32)

and

{Q∗(t), K∗(t)} =

{
{ ˜̃Q(t), ˜̃K(t)}, t ∈ [0, τ)

{Q̃(t), K̃(t)}, t ≥ τ
, (3.33)

where the MRAP and turnpike policies are characterized in Properties 5 and 2, respectively.

We reiterate that characterizing the MRAP and turnpike policies requires solving single-

state, dynamic optimization problems. The MRAP policy, summarized in Property 5, char-

acterizes the construction of the water infrastructure, during which the investment budget is

fully utilized. As soon as the water infrastructure reaches a level that allows implementing

the turnpike policy, the optimal policy switches to the turnpike policy, characterized in Prop-

erty 2, and evolves along it thereafter, eventually converging to the steady state specified in

Property 1.

4 Regulation

As noted in the introduction, water allocation is rife with market failures, hence regulation

is necessary for implementing the optimal policy, notwithstanding the use of market-based

mechanisms in some segments of the water economy. In this section I discuss regulation

based on volumetric pricing.15

It is important to distinguish between supply and demand regulation. The former entails

managing the water supply qij(t), i = n, r, d, j = D, I,A,E, from each source to each sector

and the capital infrastructure needed to carry out these supplies. Demand regulation entails

managing the sectoral demands q◦j(t), j = D, I,A,E, and the capital infrastructure needed

to distribute these allocations. The above characterization of the optimal policy provides

15On the various approaches commonly used in the regulation of water resources see Tsur and Dinar
(1997), Johansson et al. (2002), Tsur et al. (2004) and references they cite.
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straightforward rules for infrastructure regulation, namely a construction (MRAP) stage dur-

ing which the water infrastructure is built until all capital stocks reach their turnpike trajec-

tories and steering them along the turnpikes thereafter. As explained above, the MRAP stage

is typically short and we focus on the turnpike stage. The reminder of this section focuses

on implementing the turnpike water allocation q̃(t) = {q̃ij(t), i = n, r, d, j = D, I,A,E} via

water pricing. The q̃(t) trajectories identify the turnpike capital stocks, as specified in (3.8).

4.1 Water pricing

As noted above, Conditions (3.3)-(3.5) are of the form demand-equal-supply, with de-

mands on the left-hand sides and (unit) supply costs on the right-hand sides, where the

latter were denoted p̃ij(t), i = n, r, d, j = D, I,A,E, (cf. (3.9)-(3.11)). We denote by pij(t)

the associated unit cost in general (not necessarily along the turnpike). A pricing policy is

a vector P (t) = Pj(t), j = D, I,A,E, that imposes the price Pj(t) on sector j’th users at

time t. Let q(P (t)) = {qij(P (t)), i = n, r, d, j = D, I,A,E} represent the water allocation

generated by the pricing policy P (t). Then, q(P (t)) satisfies:

qij(P (t)) > 0 implies pij(t) ≤ Pj(t), i = n, r, d, j = D, I,A,E, (4.1a)

and

Dj(q◦j(P (t)) ≤ Pj(t) equality holding if q◦j(t) > 0, j = D, I,A,E, (4.1b)

where q◦j(P (t)) is defined in (2.1b). Condition (4.1a) states that water from source i is

supplied to sector j only if the associated unit cost pij(t) does not exceed the water price

Pj(t). Condition (4.1b) states that sector j’th users consume water along the demand curve,

i.e., they demand water up to the point where their willingness to pay for an additional unit

just equals the water price. If q(P (t)) is unique, we say that P (t) implements the allocation

q(P (t)). We seek the water prices that implement the turnpike allocation q̃(t).
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To that end, let

P̃j(t) = min
i∈{n,r,d}

p̃ij(t), j = D, I,A,E, (4.2)

where the p̃ij(t)’s are the unit costs along the turnpike, defined in (3.9)-(3.11).16 Thus, P̃j(t)

is the minimal unit cost of supplying water to sector j at time t along the turnpike policy.

Then,

Property 7. Along the turnpike policy, p̃ij(t) = P̃j(t) for all sources i that supply water to

sector j, i.e.,

q̃ij(t) > 0 implies p̃ij(t) = P̃j(t), i = n, r, d, j = D, I,A,E. (4.3)

Proof. Conditions (3.3)-(3.5) imply

Dj(q̃◦j(t)) ≤ P̃j(t) equality holding if q̃◦j(t) > 0, j = D, I,A,E, (4.4)

which together with (4.2) give (4.3).

Property 7 states that, along the turnpike policy, the unit costs of allocating water to

sector j are the same for all sources that supply water to this sector. Moreover, this unit cost

is the minimal unit cost of supplying water to sector j from any feasible source i = n, r, d.

Let P̃ (t) = (P̃D(t), P̃I(t), P̃A(t), P̃E(t)), where the P̃j(t)’s are defined in (4.2). Then:

Property 8. Suppose that the turnpike policy is unique (see conditions in the proof of Prop-

erty 2). Then, P̃ (t) implements the turnpike allocation, i.e., q(P̃ (t)) = q̃(t).

Proof. If the turnpike policy is unique, then q̃(t) = {q̃ij(t), i = n, r, d, j = D, I,A,E}

is the unique solution of (3.3)-(3.5), given Q̃(t), θ̃(t) and ξ̃(t). But given p̃(t), conditions

(4.1) are equivalent to (4.3)-(4.4). The uniqueness of the turnpike allocation, then, implies

q(P̃ (t)) = q̃(t)).

16If restriction (2.6) is imposed, then P̃D(t) = mini∈{n,d} p̃iD(t).
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In view of Property 8, P̃ (t) is referred to as the turnpike pricing policy. This policy

implements the turnpike allocations q̃(t), which in turn determine the turnpike capital stocks

K̃(t) = {K̃i(t), i = n, r, d, s, K̃ij(t), i = n, r, d, j = D, I,A,E} via (3.8). The supply cost at

time t associated with the turnpike policy is therefore

C(Q̃(t), q̃(t)) + (ρ+ δ)K̃(t), (4.5)

where the variable cost C(Q̃(t), q̃(t)) is defined in (2.10) and K̃(t) is the total water infras-

tructure along the turnpike (cf. (3.2)).

The turnpike pricing policy raises the proceeds
∑

j=D,I,A,E q̃◦j(t)P̃j(t). If these proceeds

suffice to cover the supply costs (4.5), we say that the policy is self-sustained. A self-sustained

policy can be implemented without external financial intervention (such as subsidizing water

suppliers), which greatly facilitates its implementation. We show that the turnpike pricing

policy P̃ (t) is self-sustained.

4.2 Cost recovery

It is convenient to consider the case of linear variable cost functions:

Ci(qi◦) = ciqi◦, i = n, r, d, s, Cij(qij) = cijqij, i = n, r, d, j = D, I,A,E, (4.6)

where cn and cn(Q) are used interchangeably. If a policy is self-sustained in the linear case,

it is also self-sustained for convex variable cost functions.

Under (4.6), the turnpike unit supply costs p̃ij(t) become

p̃nj(t) = cn(Q̃(t)) + cnj + µn + µnj + β
(
cs + µs − ξ̃(t)

)
+ θ̃(t), j = D, I; (4.7a)

p̃nj(t) = cn(Q̃(t)) + cnj + µn + µnj + θ̃(t), j = A,E; (4.7b)

p̃rj(t) = cr + crj + µr + µrj + β (cs + µs) + ξ̃(t)(1− β), j = D, I; (4.8a)
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p̃rj(t) = cr + crj + µr + µrj + ξ̃(t), j = A,E; (4.8b)

p̃dj(t) = cd + cdj + µd + µdj + β
(
cs + µs − ξ̃

)
, j = D, I; (4.9a)

p̃dj(t) = cd + cdj + µd + µdj, j = A,E. (4.9b)

The turnpike pricing policy raises the proceeds
∑

j=D,I,A,E q̃◦j(t)P̃j(t) at time t, which

using q̃◦j(t) =
∑

i=n,r,d q̃ij(t), can be expressed as

∑
j=D,I,A,E

∑
i=n,r,d

q̃ij(t)P̃j(t).

Invoking Property 7 allows expressing these proceeds as

∑
j=D,I,A,E

∑
i=n,r,d

q̃ij(t)p̃ij(t). (4.10)

We now use (4.7)-(4.9) to evaluate (4.10). The domestic and industrial sectors (j = D, I)

raise the proceeds

∑
j=D,I

∑
i=n,r,d

q̃ij(t)p̃ij(t) =
∑
j=D,I

∑
i=n,r,d

q̃ij(t)
[
ci + cij + µi + µij + β(cs + µs − ξ̃(t))

]
+∑

j=D,I

q̃nj(t)θ̃(t) +
∑
D,I

q̃rj(t)ξ̃(t).

Noting (2.1b) and (2.4), the terms involving β can be expressed as

∑
j=D,I

∑
i=n,r,d

q̃ij(t)β
[
cs + µs − ξ̃(t)

]
=
∑
j=D,I

q̃◦j(t)β
[
cs + µs − ξ̃(t)

]
= q̃s◦(t)

[
cs + µs − ξ̃(t)

]
.

The domestic and industrial proceeds, thus, become

∑
j=D,I

∑
i=n,r,d

q̃ij(t)p̃ij(t) =
∑
j=D,I

∑
i=n,r,d,s

q̃ij(t) [ci + µi] +
∑
j=D,I

∑
i=n,r,d

q̃ij(t) [cij + µij]

+
∑
j=D,I

q̃nj(t)θ̃(t) +
∑
j=D,I

q̃rj(t)ξ̃(t)− q̃s◦(t)ξ̃(t),
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where it is noted that the sum over i in the first term on the right-hand side includes the

sewage s. Repeating these steps for the agriculture and environmental sectors (j = A,E),

these sectors raise the proceeds

∑
j=A,E

∑
i=n,r,d

q̃ij(t)p̃ij(t) =
∑

j=A,E

∑
i=n,r,d

q̃ij(t) (ci + µi) +
∑

j=A,E

∑
i=n,r,d

q̃ij(t) (cij + µij)

+
∑

j=A,E

q̃nj(t)θ̃(t) +
∑

j=A,E

q̃rj(t)ξ̃(t).

Summing the two expressions gives the total proceeds

∑
i=n,r,d,s

q̃i◦(t) [ci + µi] +
∑

j=D,I,A,E

∑
i=n,r,d

q̃ij(t) [cij + µij] +
∑

j=D,I,A,E

q̃nj(t)θ̃(t)+

[q̃r◦(t)− q̃s◦(t)] ξ̃(t),

where (2.1a) was used to write q̃r◦(t) =
∑

j=D,I,A,E q̃ij(t). Noting (3.7a), the right-most term

above vanishes. Moreover, (3.2) and (3.8) give

q̃i◦(t)µi = (ρ+ δ)K̃i(t), i = n, r, d, s, q̃ij(t)µij = (ρ+ δ)K̃ij(t), i = n, r, d, j = D, I,A,E.

We thus conclude that

∑
j=D,I,A,E

q̃◦j(t)P̃j(t) = C(Q̃(t), q̃(t)) + (ρ+ δ)K̃(t) + q̃n◦(t)θ̃(t), (4.11)

implying that:

Property 9. The proceeds
∑

j=D,I,A,E q̃◦j(t)P̃j(t) cover the supply costs (4.5) and leave the

surplus q̃n◦(t)θ̃(t).

The surplus proceeds, q̃n◦(t)θ̃(t), are associated with the shadow (or in situ) price of

natural water θ̃(t). Sorting out the causes of this surplus requires understanding the role of

the shadow price, which is best seen by considering the steady state θ̂, specified in (3.14):

θ̂ =
ϑ̂− c ′n(Q̂)R(Q̂) +Bis ′

E (Q̂)

ρ−R′(Q̂)
.
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The numerator represents the annual benefit obtained by a marginal change in the natural

water stock. The denominator, ρ − R′(Q̂), is the effective discount rate, consisting of the

interest rate minus the marginal recharge. The division by ρ−R′(Q̂), thus, gives the present

value of the annual benefit stream associated with the marginal change in the natural water

stock. We see that θ̂ consists of three terms. The scarcity component of θ̂ is represented

by ϑ̂. Recall that ϑ(t) is the shadow price of the Q(t) ≥ Q constraint. Thus, it vanishes if

Q̂ > Q, in which case the constraint is not binding and natural water is not scarce. If the

constraint is binding, i.e., Q̂ = Q, then the supply of natural water is limited by q̂n◦ ≤ R(Q̂)

and ϑ̂ measures the price of this constraint, i.e., its effect on the optimal payoff (welfare).

The term −c′n(Q̂) ≥ 0 accounts for the effect of the natural water stock on the supply cost

of natural water. Finally, the third term, Bis′
E (Q̂), accounts for the instream value of natural

water, embedded in its shadow (in situ) price. This term is an important component of the

environmental price of water, to which we now turn.

4.3 Environmental water pricing

As discussed in Section 2, there are two types of environmental water: conveyed and

instream. Conveyed environmental water, q◦E(t) =
∑

i=n,r,d qiE(t), originates from the water

sources (natural, recycled and desalinated) and is conveyed to various sites for environmental

purposes. The allocation qiE(t) entails the unit cost (variable plus capital) ci + ciE + µi +

µiE, i = n, r, d. The demand for conveyed environmental water was denoted DE(·) (see

subsection 2.4) and defined in terms of the willingness to pay (WTP) for an additional unit

of q◦E. The benefit generated by q◦E is measured by the area underneath this demand curve,

much like that of the other sectors (cf. (2.13)).

Unlike the other sectors, the qiE is a public good, hence the consumption of individual

users cannot be identified and users cannot be priced directly. As a result, the proceeds

q̃◦E(t)P̃E(t) cannot be raised by charging users according to their water consumption and
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must be raised by other means, e.g., taxes. Nonetheless, the optimal (turnpike) allocations

q̃iE(t), i = n, r, d, can be calculated in the same way as those of the other sectors, based on

the demand DE(·) and unit supply costs p̃iE(t), i = n, r, d.17

Instream water refers to natural water that could have been diverted or extracted but

instead is left in its natural state (stream flows, aquifers, lakes) to support ecosystems and

ecological amenities. The allocation of instream water entails no cost and its benefit is

represented by the marginal instream benefit, Bis′
E (Q̃(t)), embedded in θ̃(t) (cf. (3.6)). Noting

(4.7), the shadow price θ̃(t) is included in p̃nj(t), j = D, I,A,E, hence also in the turnpike

prices P̃j(t), j = D, I,A,E, defined in (4.2). Thus, if the marginal instream value Bis′
E (Q) is

properly accounted for when calculating the shadow price θ̃(t), then this value is included

in the turnpike prices P̃ (t) and the ensuing turnpike allocation properly accounts for the

instream value of natural water.

The turnpike policy, thus, entails setting the prices P̃j(t), j = D, I,A, on domestic,

industry and agriculture users, and raising the proceeds
∑

j=D,I,A q̃◦j(t)P̃j(t), while centrally

allocating the (conveyed) environmental water q̃◦E(t) and collecting the ensuing proceeds

q̃◦E(t)P̃E(t) via some indirect payments method (e.g., taxes). The allocation of instream

water is the result of accounting for the marginal instream value Bis′
E (Q̃(t)) when calculating

the shadow price θ̃(t) (cf. (3.6)).

We summarize the above discussion regarding pricing and allocation of environmental

water in:

Property 10 (Environmental water). (i) The demand for conveyed environmental water

DE(q◦E) is defined (like the other demands) as the WTP for an additional water unit at any

feasible q◦E allocation. Unlike the other sectors demands (which can be estimated by price-

quantity data), the estimation of DE(·) requires WTP valuation (based, e.g., on contingent

17As noted in Section 2, the public good nature of q̃◦E(t) implies that estimating the demand DE(·)
requires willingness to pay estimates (see Fleischer and Tsur 2009, Thiene and Tsur 2013, and references
they cite).
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valuation methods). Given DE(·) and the supply cost data p̃iE(t), i = n, r, d, the optimal

allocation q̃iE(t) can be calculated together with the other q̃ij(t)’s, as explained in Property 2.

Due to the public good nature of q̃◦E(t), its price P̃E(t), defined in (4.2) and calculated based

on the p̃iE(t)’s, cannot be used to implement the allocation q̃◦E(t). The latter, thus, should

be set by a water regulator and the ensuing proceeds q̃◦E(t)P̃E(t) should be raised by indirect

means (e.g., taxes).

(ii) The allocation of instream water entails no cost and is driven by the marginal instream

value of natural water, Bis′
E (Q̃(t)), embedded in the shadow price θ̃(t). The latter, in turn,

affects the water price P̃n(t) (via its effect on the p̃nj(t)’s), which determines q̃n◦(t) and

the ensuing Q̃(t). When the marginal instream value Bis′
E (·) is properly accounted for when

calculating θ̃(t), the ensuing allocation properly accounts for the value of instream water.

4.4 Timing and extent of desalination

Desalination is often more capital intensive than the supply of natural or recycled water,

in which case γd ≪ γi, i = n, r.18 Thus, µd = (ρ+ δ)/γd ≫ (ρ+ δ)γi = µi, i = n, r, implying

that the capital cost component of desalination is larger than that of natural and recycled

water. If desalinated water is demanded by sector j, i.e., q̃dj(t) > 0, then p̃dj(t) = p̃ij for all

sources i from which sector j receives water (Property 7).

Suppose that natural water is supplied to all sectors, i.e., q̃nj(t) > 0, j = D, I,A,E – a

common situation. Then, according to Property 8, sector j users demand desalinated water

only if p̃dj(t) = p̃nj(t). Comparing (3.9a) with (3.11a), retaining the linear costs (4.6), we

see that for domestic users to demand desalinated water it must be that

cn(Q̃(t)) + µn + cnD + µnD + θ̃(t) = cd + µd + cdD + µdD.

18Noting (2.7), supplying one water unit from source i requires 1/γi of capital Ki. If desalination is more
capital intensive than recycled or natural water, it requires more capital to supply one unit of water, hence
γd is smaller than both γn and γr.
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Suppose that the distribution of natural and desalinated water to households is carried out

jointly, so cnD = cdD and µnD = µdD. In this case, the above condition becomes

cn(Q̃(t)) + µn + θ̃(t) = cd + µd. (4.12)

We thus conclude that:

Property 11. When the distribution of natural and desalinated water to domestic users

is carried out jointly (i.e., cnD = cdD and µnD = µdD), Condition (4.12) is necessary for

domestic users to demand desalinated water.

The left-hand side of (4.12) is the unit cost of natural water (before distribution to the

various sectors) and the right-hand side is the unit cost of desalination. The former evolves

over time with the naturel water stock Q̃(t) and the associated shadow price θ̃(t) while the

latter is constant. Thus, Property 11 implies that as long as cn(Q̃(t)) + µn + θ̃(t) < cd + µd,

desalination is not desirable. If the supply of natural water exceeds natural recharge, i.e.,

R(Q̃(t)) < q̃n◦(t), then Q̃(t) decreases over time, implying that both cn(Q̃(t)) and θ̃(t)

increase (assuming c′n(Q) < 0). Desalination becomes economically viable (if ever), according

to Property 11, at the time the unit cost of natural water reaches the unit cost of desalination.

From this time onward, the extent of desalination is determined by q̃d◦(t). In the long run,

desalination is justifiable if

cd + µd = cn(Q̂) + µn + θ̂, (4.13)

where Q̂ and θ̂ are the steady state values of Q̃(t) and θ̃(t) (see Property 1).

We summarize this discussion in:

Property 12. When the distribution of natural and desalinated water to domestic users

is carried out jointly (i.e., cnD = cdD and µnD = µdD), desalination becomes economically

viable (if ever) at the time condition (4.12) holds. From that time onward, the extent of

desalination is determined by q̃d◦(t). Condition (4.13) provides a convenient test for the

desirability of desalination in the long run.
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4.5 Recap

The main findings of this section include:

(i) The turnpike pricing policy, which imposes the price P̃j(t) on sector j’s users, im-

plements the turnpike allocation q̃(t) = {q̃ij, i = n, r, d, j = D, I,A,E} and is self-

sustained.

(ii) The proceeds raised by the turnpike pricing policy equal the supply costs plus q̃n◦(t)θ̃(t).

The latter accounts for effects of the natural water stock on water scarcity, extraction

cost and instream value.

(iii) Because individual consumption of conveyed environmental water, q̃◦E(t), cannot be

identified, this water cannot be priced by charging individual users. As a result, the

allocation q̃◦E(t) should be regulated (e.g., set by a regional water authority) and the

associated proceeds, q̃◦E(t)P̃E(t), should be raised by indirect payment methods (e.g.,

taxes) that do not affect water demands.

(iv) The instream value of natural water is embedded in θ̃(t) and affects the allocation of

natural water via the effect of θ̃(t) on the price of natural water P̃n(t).

(v) Condition (4.13) provides a convenient test for the desirability of desalination in the

long run.

5 An example based on Israel’s water economy

A description of Israel’s water economy (sources, sectors, institutions) can be found in

Kislev (2012). More up-to-date accounts of recycling and desalination, as well as allocation

policies and prices, are discussed in Tsur (2015) and in ongoing publications of Israel’s Water

Authority.19 Annual series of natural water supplies, dating back to 1932, are presented in

19The url address (in Hebrew) is http://www.water.gov.il/hebrew/pages/water-authority-info.aspx.
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Weinberger et al. (2012). A popular account, together with an historical overview, can be

found in Siegel (2015).

Israel’s water law states that (translated from Hebrew): “The country’s water resources

are public property, controlled by the state and are designated for the needs of its residents

and the development of the country. For the purpose of this law, water resources include:

springs, streams, rivers, lakes, reservoirs, either surface or groundwater, natural or artificial,

standing or flowing, including drainage water and sewage.”20 The responsibility for enforcing

this law falls on the Water Authority (WA) and its various agencies. This responsibility

includes: long run planning of the water economy, setting annual permits for extraction and

diversion from natural sources, coordinating the construction of recycling facilities, managing

tenders for desalination plants, and regulating water allocation to all sectors via an elaborate

system of quotas (for agricultural users and environmental sites) and cost-based tariffs for all

sectors (see discussion in Kislev 2012). All these tasks are addressed by the water economy

model presented above.

In actual practice it may not be desirable to update water prices too often, due to high

transactions costs or because users require stable prices to plan ahead (e.g., irrigators of

perennial crops and contractors of treatment and desalination plants). In such cases, the

water prices can be set at their steady state (long run) levels and transitory adjustments can

be made by flexible quotas. I therefore confine attention to the steady state and calculate

the turnpike prices P̂j, j = D, I,A,E, and the ensuing allocations q̂ = {q̂ij, i = n, r, d, j =

D, I,A}. The allocations q̂ identify the infrastructure K̂ = {K̂i, i = n, r, d, s; K̂ij, i =

n, r, d, j = D, I,A} via (3.17).

Table 1 presents parameters and functions. The 6.5 percent discount rate and the 3

percent depreciation rate are the return on capital and depreciation set by the Water Au-

20Israel’s Water Law, 1959, Chapter 1 (http://water.gov.il/Hebrew/about-reshut-
hamaim/Pages/Legislation.aspx).
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thority (Belinkov 2014). The unit variable and capital costs, presented in Table 2, were

calculated based on documented data.21 The β = 0.6 share of sewage from the domestic and

industrial allocations (see equation (2.4)) is taken from Tsur (2015). The linear demands,

D−1
j (Pj) = aj − bjPj, are assumed for convenience and the aj, bj, j = D, I,A parameters

(presented in Table 3) were calibrated based on consumption-price data reported by the

Water Authority.22 The environmental demand parameters, aE and bE, and the marginal

instream value, Bis′
E (Q), are assumed.23

Table 1: Parameters and functions.

Parameter/function Value Description

ρ 0.065 discount rate
δ 0.03 depreciation rate

ci, cij, µi, µij Table 2 unit supply costs (shekel per m3)
β 0.6 sewage share from domestic and industrial sectors

D−1
j (Pj) = aj − bjPj Table 3 demand coefficients

Bis′
E (Q) 0.01 marginal instream value (assumed)
R(Q) 1, 000 natural water recharge (MCM/y)
Q 0 lower bound on Q

The annual natural recharge of 1, 000 millionm3 (MCM/y) is based on the 1, 125 MCM/y

average annual recharge during the period 1993-2009, reported in Weinberger et al. (2012,

Table 7, p. 13). This figure excludes Gaza and the Eastern and Northeastern aquifers

(underlying the West Bank). Subtracting the 100 MCM/y allocated to Jordan (under current

21These data were derived from the cost breakdown underlying the water charges determined by the Water
Authority (see http://www.water.gov.il/Hebrew/Rates/Pages/Rates.aspx), from Belinkov (2014) and from
conversations with Amir Shakarov of the Water Authority (whose help is gratefully acknowledged).

22The linear demand specification is made for illustration purpose. An empirical ap-
plication, with detailed data and elaborate estimation of nonlinear demand specifications,
is beyond the current scope. Water consumption data for the period 1998-2016 can be
found in http://www.water.gov.il/Hebrew/ProfessionalInfoAndData/Allocation-Consumption-and-
production/20164/thrich%20lfie%20matarot%201998-2016.pdf. Water tariffs for this period can be
found in http://www.water.gov.il/Hebrew/Rates/Pages/prices-archive.aspx. The linear demand coefficients
were calibrated as follows. First, consumptions are regressed on an intercept and prices (with a time trend if
needed): q◦j(t) = aj − bjPj(t), j = D, I,A. The inverse demand functions are then Dj = aj/bj − (1/bj)q◦j .

23Calibration requires willingness to pay estimates based on contingent valuation studies, which are
presently not available.
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agreements), leaves (after rounding) 1, 000 MCM/y. The zero lower bound Q = 0 is a

harmless normalization.

Table 2: Unit supply cost data in shekel per m3 (the exchange rate at the time of writing is
$ 1 = 3.7 Israeli shekel).

(cij, µij) (ci, µi)

Domestic Industry Ag Env

Natural 2.21, 1.63 2.10, 1.50 0.30, 0.50 0.30, 0.30 1.20, 1.00
Recycled 2.15, 1.50 0.40, 0.45 0.20, 0.45 0.30, 0.80
Desalinated 2.10, 1.74 2.10, 1.50 0.30, 0.80 0.30, 0.80 1.50, 1.30
Sewage 1.47, 1.16

Table 3: Demand coefficients.

Domestic Industry Agriculture Environment

a 1200 130 1200 500
b 35 5 130 40

The steady state allocation q̂ = {q̂ij, i = n, r, d, j = D, I,A,E} and prices P̂j, j =

D, I,A,E, are reported in Table 4. The desirable desalination capacity is 512 MCM/y,

allocated to households (437 MCM/y) and industry (75 MCM/y). The current desalination

capacity in Israel is 600 MCM/y. The larger capacity could be justified by expected increase

in demand due to population growth. The table indicates that agricultural users should

receive water mostly from recycling plants (559 MCM/y) and some from natural sources

(172 MCM/y). In actual practice the allocation of natural water to agriculture is larger (see

Tsur 2015). The reason could be insufficient infrastructure to convey recycled water from the

densely populated center (where most recycling plants are located) to the heavily cultivated

north and south. In other words, the recycling infrastructure is still in its construction

(MRAP) stage. Indeed, observing the trends of water allocations during the past decade

(see Tsur 2015), it is evident that the water economy evolves towards an allocation in which
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agriculture relies mostly on recycled water. Table 4 also reveals a substantial environmental

water allocation of 364 MCM/y, supplied mostly from natural sources (317 MCM/y) and

some from recycled sources (47 MCM/y). This allocation is at odds with the actual, much

smaller, allocation. The reason for this divergence is twofold. First, the recommended

allocation is based on assumed environmental water demand that may not reflect the true

demand. Second, the infrastructure needed to convey environmental water (natural and

recycled) to environmental sites may be underdeveloped (i.e., is still under construction).

Table 4: Steady state allocation (MCM/y) and water prices (shekel/m3).

q̂ij (MCM/y) q̂i◦
Domestic Industry Agriculture Environment

Natural (n) 509.45 1.66 171.97 316.92 1000
Recycled (r) 0 18.67 559.49 47.08 625.23
Desalinated (d) 437.54 74.73 0 0 512.28
q̂◦j 946.99 95.06 731.46 364.00
Sewage (s) 622.20 57.03 625.23

P̂j (shekel per m
3) 7.23 6.99 3.60 3.40

θ̂ 0.60 (natural water shadow price)

ξ̂ 1.65 (recycled water shadow price)

Table 4 also presents the turnpike prices P̂j, j = D, I,A,E, that implement the (optimal)

steady-state allocation q̂, as well as the shadow prices θ̂ and ξ̂. Recalling (4.7)-(4.9), θ̂

is included in the water price of natural water users, while ξ̂ operates as a tax for users

of recycled water and as a subsidy for domestic and industrial users (that contribute to

the supply of recycled water via the sewage they generate). The two shadow prices are

important components of the optimal prices and the ensuing water allocations: θ̂ accounts

for the scarcity, extraction cost and instream value of natural water (in the present example,

the extraction cost effect is assumed away by letting c′n(Q) = 0); ξ̂ is the shadow price of

the q̂r◦ ≤ q̂s◦ constraint (i.e., that the supply of recycled water is limited by the sewage
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discharge). The shadow price θ̂ affect the allocation of natural water and the extent of

desalination (Property 12), while the dual (tax/subsidy) role of ξ̂ is vital in steering water

allocation toward sewage generating users (households and industry) and in determining the

use of recycled water.

Although the shadow price θ̂ = 0.6 shekel/m3 may seem small relative to the water prices,

which range between 7.23 and 3.4 shekel/m3 (Table 4), it has a pronounced effect on the

desalination scale (of 512 MCM/y which is about 54 percent of domestic water consumption).

This substantial desalination alleviates the water scarcity in two ways: first it increases the

water input by augmenting nature as an external water source; second, eachm3 of desalinated

water allocated to households and industrial users contributes an additional β = 0.6m3 of

recycled water (via the sewage these users generate). Thus, the shadow price θ̂ gives rise to

the large scale desalination allocation and the latter, in turn, alleviates water scarcity and

reduces the value of θ̂.24

I close this section by reiterating that the purpose of the above example is illustrative.

A thorough application, based on which policy recommendations can be drawn, requires

elaborate water demand estimation of all sectors as well as up-to-date supply costs data.

It should allow for sub-sectors, such as agricultural users that cannot use recycled water

(e.g., growers of field crops for direct human consumption) and those that can use water

from all sources (e.g., growers of tree crops, cotton or animal feed). Such a division of the

agriculture sector implies different prices for each of the subsectors, giving rise to different

prices for recycled water and potable water (natural and desalinated) allocated to agriculture

(as happens in actual practice). Additional sub-sources and sub-sectors, discussed in Section

2, can be incorporated when needed. The modular structure of the water economy framework

facilitates such extensions.

24Indeed, calculating the steady state allocations and prices without desalination, i.e., assuming that no
desalination plants were constructed, gives θ̂ = 3.28 shekel/m3.
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6 Concluding comments

The water prices that implement the optimal water policy are derived. In addition

to the usual variable and capital cost components, these prices contain two shadow price

components: the in situ value of natural water and the scarcity price of recycled water. It

is shown that the former accounts, in addition to the scarcity and extraction cost effects, to

the instream value of natural water and has a pronounce effect on the onset and extant of

desalination. The scarcity of recycled water stems from the fact that its supply is limited by

the discharge of sewage from domestic and industrial users. The associated price (i.e., the

shadow price of recycled water) is used as a subsidy for users that contribute to the supply

of recycled water (i.e., domestic and industrial users) and as a tax for users that consume

recycled water. The effect of this shadow price, therefore, extends beyond the allocation of

recycled water and affects the allocation of water from all sources to all sectors.

The optimal pricing policy is shown to be self-sustained, in that the proceeds it generates

cover the total supply costs. Actually, the proceeds exceed the supply costs by a surplus

amount given by the proceeds associated with the natural water shadow price. This surplus

is then traced to the components comprising the shadow price of natural water, namely

scarcity, extraction cost and instream values. It is shown that the shadow price of natural

water is central in determining the onset and extent of desalination.

The analysis distinguishes between two types of environmental water: conveyed and

instream. The former refers to water conveyed from various sources to various environmental

sites (e.g., to restore a polluted stream flow); the latter refers to leaving water, that otherwise

could have been diverted or extracted, in its natural state (aquifer, lake, stream flow).

Conveyed environmental water differs from water allocations to other sectors (domestic,

industry and agriculture) in one important respect: the services it provides (environmental

amenities) are public goods. As a result, individual users cannot be identified and priced
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according to their consumption, and this property bears implications for allocating this water

and collection the ensuing proceeds. The allocation of instream water is determined by the

shadow price of natural water when the latter properly accounts for the marginal benefit of

instream water.

The modular structure of the water economy framework, presented in Section 2, allows

adding sub-sources and sub-sectors in a straightforward fashion. Other extensions, such as

growing water demands (due to population growth) or stochastic natural water recharge

(due to stochastic precipitation) are welcome tasks for future research.

Appendix: Optimality proofs

The proofs follow the arguments in Tsur and Zemel (2018). The optimal policy consists of

the feasible q(t) and x(t) processes that maximize (2.18) subject to (2.2) and (2.8), givenQ(0)

andK(0), where feasibility entails conditions (2.3), (2.5), (2.6), (2.7), (2.9) and nonnegativity

of q(t) and x(t). This problem is referred to as the full problem, its solution is called the

optimal policy and denoted with asterisk superscripts. The full problem is complicated

because it contains the K(t) = {Ki(t), Kij(t)} as states, in addition to Q(t). It greatly

simplifies matter if the elements ofK(t) are considered as decisions rather than states. This is

done twice: first, ignoring the investment budget constraint (2.9), and second accounting for

this constraint. The former gives rise to the turnpike problem, and the latter to the restricted

turnpike problem. The MRAP (or construction) policy coincides with the restricted turnpike

policy when the investment constraint (2.9) is binding. It is then shown that the optimal

policy begins with the MRAP policy until the turnpike policy becomes feasible, at which

time the optimal policy switches to the turnpike policy and evolves along it thereafter.
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A The turnpike policy

The turnpike policy treats the capital stocks K(t) as decisions rather than states, hence

consists of the feasible q(t) and K(t) processes that maximize (2.18) subject to (2.2) given

Q(0), where feasibility entails (2.3), (2.4), (2.5), (2.6), (2.7) and nonnegativity of q(t) and

K(t) (i.e., the conditions of the full problem except (2.8) and (2.9)). Turnpike policy pro-

cesses are denoted with a tilde overhead, e.g., q̃(t) and K̃(t). Under mild conditions (see Tsur

and Zemel 2018), the elements of K̃(t) are differentiable and give rise to the investments

x̃(t), specified in (3.18). Clearly, any K(t) generated via the investments x(t) that satisfy

the budget constraint (2.9) is also feasible when the elements of K(t) can be freely chosen

but not vice versa. Thus,

Claim 2. If the turnpike policy is feasible for the full problem, it must be optimal.

The current-value Hamiltonian associated with the turnpike problem is

H(t) = B(Q(t), q(t))− C(Q(t), q(t))− (ρ+ δ)K(t) + θ(t)[R(Q(t))− qn◦(t)], (A.1)

where θ(t) is the costate of Q(t). The Lagrangian, which incorporates constraints (2.3), (2.5)

and (2.7), is

L(t) = H(t) + ϑ(t)
(
Q(t)−Q

)
+ ξ(t) (qs◦(t)− qr◦(t)) +

∑
i=n,r,d,s

mi(t) (γiKi(t)− qi◦(t))+∑
i=n,r,d

∑
j=D,I,A,E

mij(t) (γijKij(t)− qij(t)) , (A.2)

where ϑ(t), ξ(t) are the multipliers of (2.3), (2.5), and mi(t), mij(t) are the multipliers

corresponding to (2.7).

The necessary conditions associated with the Ki(t) and Kij(t), recalling that they are

subject to choice, i.e., ∂L(t)/∂Ki(t) = ∂L(t)/∂Kij(t) = 0, give mi(t) = µi and mij(t) = µij,
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where µi and µij are defined in (3.2). Substituting µi and µij for mi(t) and mij(t) in (A.2),

the necessary conditions associated with qij(t) (i.e., ∂L/∂qij = 0) give (3.3)-(3.5) or their

condensed form (3.12).

The necessary condition associated with the costate θ(t) is

˙̃θ(t)− ρθ̃(t) = c′n(Q̃(t))q̃n◦(t)−Bis
E (Q̃(t))− θ̃(t)R′(Q̃(t))− ϑ̃(t),

verifying (3.6), where Cn(Q, qn◦) = cn(Q)qn◦ is assumed. The complementary slackness con-

ditions associated with (2.3) and (2.5) give (3.7), and the complementary slackness conditions

associated with (2.7),

µi[γiK̃i(t)− q̃i◦(t)] = 0 and µij[γijK̃ij(t)− q̃ij(t)] = 0,

verify (3.8).

These conditions, together with (2.2), solve for the optimal Q̃(t), θ̃(t), q̃(t) and ξ̃(t), given

Q̃(0) = Q(0) and the boundary values Q̃(∞) = Q̂ and θ̂(∞) = θ̂, where Q̂ and θ̂ are specified

in Property 1 and ϑ̃(t) satisfies (3.7b). This completes the proof of Property 2.

Notice that the turnpike problem involves a single state (the natural water stock Q(t))

and uniqueness of the turnpike policy is ensured when H(t) is strictly concave in Q(t) and

q(t) (recall that L(t) is liner in the elements of K(t)). We assume that these conditions

hold and the turnpike policy is unique. Under mild smoothness conditions, the K̃i(t)’s and

K̃ij(t)’s are differentiable in time, hence can be viewed as driven by the turnpike investments,

specified in (3.18). In view of Claim 2, we conclude that:

Claim 3. If the turnpike policy is feasible, then (q∗(t), x∗(t)) = (q̃(t), x̃(t)).

B The MRAP policy

Suppose the qij(t) and {Ki(t), Kij(t)} are subject to choice, as in the turnpike problem,

but the corresponding total capitalK(t), defined in (2.17), cannot exceed the frontier process
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K̄(t) = (x̄/δ)
(
1− eδt

)
+ K(0)e−δt, defined in (3.22). Recall that K̄(t) is the total capital

process that departs from the actual initial total capital K(0) under the maximal total

investment X(t) = x̄. We call this problem the restricted turnpike problem, the associated

optimal processes are called restricted turnpike processes and denoted with a double-tilde

overhead, e.g., ˜̃Q(t), ˜̃q(t), ˜̃K(t).

The restricted turnpike policy consists of the feasible q(t) and K(t) that maximize (2.18)

subject to (2.2) given Q(0), where feasibility entails (2.3), (2.4), (2.5), (2.6), (2.7), non-

negativity of q(t) and K(t), and (3.23), i.e., the feasibility conditions of the turnpike prob-

lem plus restriction (3.23).The Hamiltonian of the restricted turnpike problem is the same

as the Hamiltonian of the turnpike problem, defined in (A.1), and the Lagrangian equals

L(t) + η(t)[K̄(t) −K(t)], where L(t) is the Lagrangian of the turnpike problem, defined in

(A.2), and η(t) ≥ 0 is the shadow price (multiplier) of (3.23).

The necessary conditions with respect to Ki(t) and Kij(t) give (3.25). Substituting the

mi(t) and mij(t) in L(t), the necessary conditions with respect to qij(t) give (3.26). The

necessary condition associated with the costate θ(t) gives (3.6) with ˜̃θ(t) replacing θ̃(t) and

the complementary slackness conditions (3.7) now hold with ˜̃ϑ(t) and ˜̃ξ(t) replacing ϑ̃(t) and

ξ̃(t), respectively. The complementary slackness conditions associated with (2.7) give (3.28).

Finally, the complementary slackness conditions associated with (3.23) is

η(t)[K̄(t)− ˜̃K(t)] = 0, t ∈ [0, τ ]. (B.1)

Claim 4. Suppose τ > 0, so K̄(t) < K̃( ˜̃Q(t)) during t ∈ [0, τ) while the turnpike policy is

not feasible. Then, ˜̃K(t) satisfies (3.27).

Proof. Suppose ˜̃K(t0) < K̄(t0) at some time t0 < τ . Then, ˜̃K(t) < K̄(t) for all t ∈ [t0, τ ].

This is so because the frontier process K̄(t) is the result of investing at the maximal rate

x̄, hence cannot be overtaken from below by a feasible total capital process that departed

from the same initial total capital K(0). Condition (B.1), then, implies that η(t) = 0 for all
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t ≥ t0. If follows that conditions (3.26) coincide with conditions (3.12) for t ≥ t0. But the

necessary conditions of the turnpike and the restricted turnpike problems differ only due to

the difference between (3.26) and (3.12) and these two sets of conditions differ only when

η(t) > 0. Thus, if η(t) = 0 for t ≥ t0, the turnpike policy that departs from ˜̃Q(t0) satisfies

all the necessary conditions of the restricted turnpike problem but is infeasible because the

(unique) turnpike policy is not feasible prior to time τ – a contradiction. We conclude that

η(t) > 0 during t ∈ [0, τ), implying, noting (B.1), that ˜̃K(t) = K̄(t) during t ∈ [0, τ ],

verifying the claim.

The above discussion completes the proof of Property 3 and Part (i) of Property 4. In

view of Property 3 and Claim 4, the restricted turnpike problem can be reformulated as:

find the feasible q(t), K(t) and τ that maximize∫ τ

0

[B(q(t))− C(Q(t), q(t))− (ρ+ δ)K(t)] e−ρtdt+ e−ρτ ṽ(Q(τ)) (B.2)

subject to (2.2) and

K(t) = K̄(t), t ∈ [0, τ ] (B.3)

given Q(0), where feasibility entails the feasibility conditions of the turnpike problem and

ṽ(Q) is the value (optimal payoff) associated with the turnpike policy that departs from the

initial natural water stock Q. The Hamiltonian and Lagrangian associated with this problem

are the same as those of the restricted turnpike problem and the necessary conditions include

those of the restricted turnpike problem plus the transversality condition associated with the

choice of τ :

B(˜̃q(τ))− C( ˜̃Q(τ), ˜̃q(τ))− (ρ+ δ)K̄(τ) + ˜̃θ(τ)
(
R( ˜̃Q(τ))− ˜̃qn◦(τ)

)
= ρṽ( ˜̃Q(τ)). (B.4)

Following Dynamic Programming arguments, the right-hand side above is expressed as

ρṽ( ˜̃Q(τ)) = B(q̃( ˜̃Q(τ))−C( ˜̃Q(τ), q̃( ˜̃Q(τ))−(ρ+δ)K̃( ˜̃Q(τ))+θ̃( ˜̃Q(τ))
(
R( ˜̃Q(τ))− q̃n◦(

˜̃Q(τ))
)
.

(B.5)
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Now, ˜̃q(τ) = q̃( ˜̃Q(τ)) because at time τ the (unique) turnpike policy becomes feasible,

hence also optimal, for the restricted turnpike problem (Claim 1). Conditions (3.8), (3.28)

and (B.3), then, imply K̃( ˜̃Q(τ)) = ˜̃K(τ) = K̄(τ), verifying (3.24). Invoking ˜̃q(τ) = q̃( ˜̃Q(τ)),

(3.24), (B.4) and (B.5) verifies (3.29), completing the proof of Property 4.

C The optimal policy

The full problem is a restricted version of the restricted turnpike problem. This is so

because, while the two problems share the same objective and constraints, the capital stocks

K(t) = {Ki(t), Kij(t)} are states driven by investments under the full problem, whereas

under the restricted turnpike problem they are subject to choice. Thus,

Claim 5. If the restricted turnpike policy is feasible for the full problem, it must be optimal.

The question, then, is whether the restricted turnpike policy is feasible for the full prob-

lem. The answer is in the affirmative only if ˜̃K(0) ≤ K(0), i.e., when the initial capital

stocks under the restricted turnpike policy do not exceed the actual initial stocks. But the

elements of ˜̃K(0) are subject to choice and the elements of K(0) are exogenously given, hence

in general the two differ. However, the corresponding total capital stocks satisfy

˜̃K(0) ≤ K(0), (C.1)

because the restricted turnpike policy satisfies (3.23) at all times and particularly at the

initial time. We thus conclude that:

Claim 6. Suppose that at the initial time, given the actual total capital K(0), the existing

capital can be reshuffled between the different stocks, such that any capital configuration

K(0) = {Ki(0), Kij(0)}, satisfying∑
i=n,r,d,s

Ki(0) +
∑

i=n,r,d

∑
j=D,I,A,E

Kij(0) ≤ K(0), (C.2)

is feasible. Then, the restricted turnpike policy is feasible for the full problem.
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Claims 5 and 6, together with the smoothness conditions ensuring the existence of ˜̃x(t)

and x̃(t) (see Tsur and Zemel 2018), complete the proof of Property 6.
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