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MSD achieved by our model: 0.00584. 

All 14 qualitative phenomena passed.  

MSD for the competition set: 0.0088  

First, we present a description of the baseline model, appearing also in Erev, 

Ert & Plonsky (2015). Then, we describe our unique contribution to the baseline’s 

model predictions.  

The baseline model, referred to as Best Estimate And Simulation Techniques 

(BEAST), assumes that Option A is strictly preferred over option B, after r trials, if 

and only if: 

 

Where BEVA(r) – BEVB(r) is the advantage of A over B based on the best estimation 

of the expected values, STA(r) – STB(r) is the advantage of A over B based on mental 

simulations, and e(r) is an error term
1
.  

In trivial choices, when one of the options dominates the other, e(r) = 0
2
. In all 

other cases e(r) is drawn from a normal distribution with a mean 0 and standard 

deviation σi (a property of agent i). 

When the payoff distributions are known (the non-ambiguous problems in our study), 

the best estimations of the expected values are the actual objective ones. That is, 

BEVj(r) equals the expected value of option j, EVj (for all r). The simulation-based 

estimate of option j, STj(r), equals the average of κi (a property of i) outcomes that are 

each drawn (from option j’s possible outcomes) in one mental simulation
3
.  

Each simulation uses one of four techniques. Simulation technique Unbiased 

implies random and unbiased draws, either from the options’ described distributions 

or from the options’ observed history of outcomes. Before obtaining feedback 

(decisions in trials 1 to 6) the draws are taken from the objective distributions using a 

luck-level procedure: The agent first draws a luck-level, a uniform number between 

zero and one. Then, for each prospect, the agent uses the same luck-level as a 

                                                           
1
 When the left-hand side of Inequality 1=zero, we assume random choice between the options.   

2
 Dominance= either deterministic dominance or first-order stochastic dominance.  

3
 E.g., consider an agent with κi = 3 who faces Problem 17 ("30" or "50, .5; -1") based on the following 

simulation results {30, 50}, {30, 50} and {30, -1} and the error term e(r) = -2. Equation 1 yields (30 − 
24.5) + (90/3 − 99/3) − 2 = 0.5. Thus, the model implies an A choice.   



percentile in the prospect’s cumulative distribution function and draws the outcome 

that fits that percentile
4
.  

When the agents can rely on feedback (trials 7 to 25) they first sample one of 

the previous trials (all trials are equally likely to be sampled), and the drawn outcomes 

for both options are those observed in that trial.  

The other three techniques are “biased”: they can be described as a mental 

draw from distributions that differ from the objective distributions. The probability of 

choosing one of the biased techniques decreases when the participants receive 

feedback. Specifically, it equals: 

 

Where βi > 0 captures the magnitude of the agent's initial tendency to use one of the 

biased techniques, t is the number of trials with feedback, and θi > 0 captures agent i's 

sensitivity to feedback
5
. 

The three biased techniques are each used with equal probability, PBias(t)/3. 

Simulation technique Uniform yields each of the possible outcomes with equal 

probability (see a related idea in Birnbaum, 2008) using the luck-level procedure 

described above (the draws are made from the uniform cumulative distribution 

function even after feedback is obtained).  

Simulation-technique Contingent Pessimism is similar to the priority heuristic 

(Brandstätter et al., 2006); it depends on the sign of the best possible payoff 

(SignMax), and the ratio of the minimum payoffs (RatioMin). When SignMax > 0, 

and RatioMin ≤ γi (0 < γi <1 is a property of i), this simulation yields the worst 

possible payoffs for each option (MINA and MINB). This helps the model capture 

loss aversion and the certainty effect. When one of the two conditions is not met, the 

current simulation implies random choice among the possible payoffs (identically to 

technique Uniform). RatioMin is computed as: 

 

                                                           
4
 i.e., the outcome drawn is the result of F-1(x), where x is the luck-level and F is the prospect’s 

cumulative distribution function. For example, in Problem 2 ("3, .25; 0" or "4, .2; 0"), a luck level of .67 
yields the draw {0, 0}, a luck level of 0.77 yields the draw {3, 0}, and a luck level of .87 yields the draw 
{3, 4}.   
5
 E.g., assuming βi = 3, and θi =.5, the probability of using one of the biased techniques in each of the 
κi simulations is 3/(3+1) =.75 when t = 0 (trials 1 to 6), 3/(3+1+1) = .6 when t = 1 (Trial 7), and 
3/(3+1+3.36) = .407 when t = 19 (Trial 25).   



For example, RatioMin = 0 in Problem 9 ("1" or "100, .01; 0"), and 0.5 in 

Problem 10 ("2" or "101, .01; 1"). The contingencies capture two regularities. The 

sensitivity to SignMax implies less pessimism (less risk aversion) in the loss domain, 

hence the reflection effect. The second, RatioMin contingency, implies less 

pessimism when the minimal outcomes appear similar (have the same sign and are 

close in magnitudes). This implies that the addition of constant to all the payoffs, 

decreases risk aversion in the gain domain. In addition, it implies higher sensitivity to 

rare events in problems like Problem 10 and Problem 61 (large RatioMin), than in 

problems like Problem 9 and Problem 25 (small RatioMin). 

Simulation technique Sign implies high sensitivity to the payoff sign. It is 

identical to technique Unbiased with one important exception: Positive drawn values 

are replaced by R, and negative outcomes are replaced by -R, where R is the payoff 

range (the difference between the best and worst possible payoffs in the current 

problem; e.g., 100 in Problem 9 and Problem 10)
6
. 

 When the probabilities of the different outcomes are unknown (as in the 

problems with ambiguous Option B), they are initially estimated with a pessimistic 

bias (Gilboa & Schmeidler, 1989). The initial expected value of the ambiguous option 

is estimated as a weighted average of three terms: EVA, MINB, and UEVB, which is 

the estimated EV from Option B under the assumption that all the possible outcomes 

are equally likely. We assume the same weighting for EVA and UEVB, and capture 

the weighting of MINB with 0 ≤ φi ≤ 1: an ambiguity aversion trait of i. That is, 

 

For example, assuming φi = 0.05, BEVB(0) in Problem 22 (“10, .5; 0” or “10, 

p; 0”) equals .95(5+1)/2 + .05(0) = 2.85. In the no feedback trials (1 to 6) the 

probabilities of the m possible outcomes are estimated under the assumption that the 

subjective probability of the worst outcome SPMINB is higher than 1/m, and each of 

the other m−1 subjective probabilities equal (1- SPMINB )/(m-1). Specifically, 

SPMINB is computed as the value that minimizes the difference between BEVB(0) 

and the estimated expected value from Option B based on the subjective probabilities: 

SPMINB∙MINB + (1- SPMINB)UBh, where UBh =(mUB- MINB)/(m-1) denotes the 

average of the best m−1 outcomes. This assumption implies that 

 

                                                           
6
 E.g., in Problem 9 ("1" or "100, .01; 0"), all the positive outcomes are replaced by +100 (the value of 

R), and the 0 remains 0.   



That is, in Problem 22 with φi = 0.05, SPMINB = (10 − 2.85)/(10 − 0) = 

0.715. Each trial with feedback in the ambiguous problems moves BEVB(t) toward 

EVB. Specifically, 

 

Where T is the expected number of trials with feedback (20 in the current 

setting) and OB(r) is the observed payoff generated from the ambiguous Option B at 

trial r
7
. The six properties of each agent are assumed to be drawn from uniform 

distributions between 0 and the model's parameters: σi ~ U(0, σ), κi ~ (1,2, 3, ..., κ), βi 

~ U(0, β), θi ~ U(0, θ), γi ~ U(0, γ), and φi ~ U(0, φ). Namely the model has six free 

parameters: σ, κ, β, γ, φ, θ. Notice that only four of these parameters are needed to 

capture decisions under risk without feedback (the class of problems addressed by 

prospect theory). These parameters are σ, κ, β, and γ. The parameter φ captures 

attitude toward ambiguity, and θ abstracts the reaction to feedback. Best fit was 

obtained with the parameters σ = 7, κ = 3, β = 2.6, γ = .5, φ = .07, and θ = 1.  

Our contribution 

We observed that the BEASTs model predictions deviates systematically from 

the actual choices reported, on two different occasions;  

1. When there are more than two possible outcomes in option B (i.e., lotnum > 1) or  

2. The payoff distribution of option B in unknown (ambiguous problems, amb=1). 

Our model adds an additional criterion that decides the direction of the 

deviations from the actual choices made by participants. This criterion is the 

difference between the lowest possible outcome of option A (La) and the expected 

value of the lottery option B (Hb; i.e. criterion= |La-Hb|)
8
. To correct for this 

deviation, we add a new parameter, Diffbias, dependant on the rules and criterion 

above.  

We employ this two rules after the BEAST model, as described above, has 

produced its prediction of B choice rate for each of the problems. Then, for each 

problem, our model asks the following:  

If option B in the current problem has more than two possible outcomes (i.e. 

lotnum>1), the Diffbias parameter is added to each of the BEASTs’ block predictions 

in the following manner: when |La-Hb| > 16, (-Diffbias) is subtracted
9
. When |La-Hb| 

<= 16, (+Diffbias) is added
10

.  

                                                           
7
 E.g., in Problem 22 with φi = 0.05, observing OB(6) = 0 implies that BEVB(1) = (1 − 1/20)∙2.85 + 

(1/20)∙0 = 2.707.   
8
 E.g., in Problem 69, La=11 and Hb=31, thus |La-Hb|= |11-31| =20. In Problem 45, La=13 and Hb=13, 

so |La-Hb|=|0-0| = 0. 
9
 E.g., for Problem 69, a choice rate of 0.8 predicted by BEAST will become 0.8–Diffbias. 

10
 E.g., see Problem 45, where the final outcome will be the prediction made by BEAST+Diffbias. 



Similarly, if the payoff distribution of option B is unknown (amb=1), then 

when |La-Hb| > 20, (-Diffbias) is added to BEASTs’ final prediction for a given 

problem (across all 5 blocks), and when |La-Hb| <= 20, (+Diffbias) is added.  

If a problem has both more than two possible outcomes, and is an ambiguous 

problem, Diffbias is added or subtracted (depending on the level of the criterion) both 

times. Thus, the process of adding or subtracting the parameter is serial and 

independent. For example, in Problem 69, lotnum>1 and amb=1. Because for this 

problem |La-Hb|= |11-31| =20, first our first rule subtracts (-Diffbias) and then our 

second rule adds (+Diffbias).  

The parameter Diffbias is a property of the agent, and is assumed to be drawn 

from a uniform distributions between 0 and: Diffbiasi ~ U(0, Diffbias).  

We obtained best fit with Diffbias = 0.07. After correcting the BEASTs’ 

predictions, the MSD improved to 0.005, all 14 qualitative phenomena captured.     
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