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1 Introduction

Optimal resource policies often converge towards steady states, in which

case locating the steady state is of prime importance for several reasons. First,

steady states parsimoniously characterize the optimal policy in the long run.

Second, analyzing the dependence of the steady states on various parameters

of the model provides insights on long-run tradeoffs. Finally, the location

of optimal steady states can help deriving the full dynamics of optimal poli-

cies, because the end-conditions they provide are often easier to use than

the corresponding infinite horizon transversality conditions. Building on the

single-state method of Tsur and Zemel (2001, 2014), we develop in this work a

simple method to locate optimal steady-state candidates in multi-dimensional

resource models and study their stability via a function that is readily obtained

from the model’s primitives.

The long-run behavior of economic processes was thoroughly investigated

quite a while ago in the context of multi-sector economic growth (see Kurz

1968, Levhari and Liviatan 1972, Cass and Shell 1976, Rockafellar 1976, Brock

and Scheinkman 1976, 1977, Sorger 1989, and works they cite). In that

context it was natural to make certain concavity-convexity assumptions (e.g.,

of utility functions and of production technologies), which greatly facilitated

the analysis of properties such as the global stability of the steady states.

Such assumptions, however, are quite restrictive and as a result this body of

research has not been often used outside the realm of economic growth. A case

in point is the area of resource economics, where non-convexities are pervasive

(Dasgupta and Mäler 2003).

The method developed here requires minimal assumptions on the underly-
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ing processes. It is based on a function L : X 7→ IRn defined over the set of

feasible states X ⊆ IRn in terms of the model’s (primitive) functions. This

function and its derivatives are used to identify the location of optimal steady

states and to study the (local) stability of each candidate. The simplicity

and relative ease of use of this method are due to several features. First,

the analysis is carried out within the n−dimensional state space rather than

the 2n−dimensional state-costate space. Second, the L-function is readily

obtained in terms of the model’s primitives without resorting to the opti-

mality conditions. Moreover, the properties derived require weak curvature

assumptions, formulated in terms of the ordinary Hamiltonian rather than the

maximized Hamiltonian. In particular, we require the Hamiltonian to be con-

cave with respect to the action variables only (rather than with respect to the

state and action variables jointly).

Obviously, these advantages must come at a cost, and the local analysis

embodied in the L-function method can give rise to necessary conditions only.

This means that the method can disqualify unsuitable candidates for an op-

timal steady state but, in general, cannot establish that a certain state is the

eventual target of the optimal state process. Nor can it identify cyclical be-

havior, such as in Benhabib and Nishimura (1979), Dockner and Feichtinger

(1991), Feichtinger et al. (1994) or Wirl (1992, 1995). Nonetheless, it provides

useful information, which narrows the list of optimal steady state candidates.

Indeed, the two-state examples presented in Section 5 show that the method

can reduce the list of candidates to a singleton in a variety of resource man-

agement problems.
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2 The model

We consider the n-state resource model:

v(X0) = max
{C(t)}

∫ ∞

0

f(X(t), C(t))e−ρtdt (2.1a)

subject to

Ẋ(t) = G(X(t), C(t)) (2.1b)

X(0) = X0 , (2.1c)

where the constant ρ > 0 is the discount rate, X = (x1, x2, . . . , xn)
′ ∈ X ⊆ IRn

denotes the vector of state variables, C = (c1, c2, . . . , cn)
′ ∈ C ⊆ IRn is the

vector of actions (controls), and X and C are the admissible state and action

sets, respectively (the prime denotes transpose). For the sake of concreteness,

we specify the admissible state set asX ≡
∏n

i=1[x i, x̄i] for some given constants

x i < x̄i, i = 1, 2, ..., n. The function f : X×C 7→ IR1 is the instantaneous

benefit (utility) function, and the vector function G = (g1, g2, . . . , gn)
′, with

gi : X×C 7→ IR1, represents the time evolution of the states xi, i = 1, 2, . . . , n.

It is assumed that all functions are sufficiently smooth and that problem (2.1)

admits an optimal policy, thus v : X 7→ IR1 exists.

We further assume that for each state there exists at least one influential

control. Put differently, the Jacobian of G with respect to C,

JG
C (X,C) =











g1 c1 g1 c2 . . . g1 cn
g2 c1 g2 c2 . . . g2 cn

...
gn c1 gn c2 . . . gn cn











,

is non-singular.1 More precisely, we assume that the determinant of the

Jacobian is bounded away from zero:

1Variable subscripts denote partial derivatives, e.g., gi cj ≡ ∂gi(X,C)/∂cj.
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Assumption 1. | det(JG
C (X,C))| ≥ ξ > 0 ∀ (X,C) ∈ X×C.

Define (implicitly) the vector function M = (m1, m2, . . . , mn)
′ : X 7→ C,

by

G(X,M(X)) = 0. (2.2)

When the system is at the stateX , choosing the steady state policy C =M(X)

maintains the state X indefinitely and yields the payoff

W (X) ≡ f(X,M(X))/ρ ≤ v(X), (2.3)

where the inequality holds as an equality only at the optimal steady state.

It is assumed that the steady state policy is feasible for all X ∈ X, i.e.,

M(X) ∈ C. In general (without additional structure) there is no assurance

that the optimal state process converges to a steady state and when it does

there could be several steady state candidates (depending, inter alia, on the

point of departure X0). In the next section we study the location of optimal

steady-state candidates.

3 Optimal steady state candidates

Differentiating (2.2) with respect to X gives JG
X + JG

C J
M
X = 0 or

JM
X (X) = −[JG

C (X,M(X))]−1JG
X(X,M(X)), (3.1)

where JG
X(X,C) denotes the Jacobian matrix of G(X,C) with respect to

X and JM
X (X) is the Jacobian matrix of M(X). Since the inverse matrix

[JG
C (X,M(X))]−1 exists (Assumption 1), JM

X (X) is well defined. Using (3.1)

we obtain

ρWX(X) = fX(X,M(X)) + [JM
X (X)]′ fC(X,M(X)) =

fX(X,M(X))− [JG
X(X,M(X))] ′[JG

C (X,M(X))] ′−1fC(X,M(X)),
(3.2)
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where WX(X) ≡ ∇XW (X) and fX(X,C) ≡ ∇Xf(X,C) are the n-vectors of

partial derivatives of W (X) and f(X,C) with respect to X , respectively, and

fC(X,C) ≡ ∇Cf(X,C) is the vector of partial derivatives of f(X,C) with

respect to C.

Define the vector function L : X 7→ IRn by

L(X) ≡











l1(X)
l2(X)

...
ln(X)











= ρ
{

[JG
C (X,M(X))]′ −1fC(X,M(X)) +WX(X)

}

=

(

ρIn − [JG
X(X,M(X))]′

)

[JG
C (X,M(X))]′ −1fC(X,M(X)) + fX(X,M(X))

(3.3)

where the second equality follows from (3.2).2 Let X̂ = (x̂1, x̂2, · · · , x̂n)′ ∈ X

be an optimal steady state. We say that X̂ is unconstrained if X̂ remains

an optimal steady state when the admissible state set X is slightly enlarged.3

The following property identifies optimal steady state candidates:

Proposition 1. (i) If X̂ is unconstrained, then L(X̂) = 0.

(ii) If x̂i = x̄i for some i, then li(X̂) ≥ 0.

(iii) If x̂i = x i for some i, then li(X̂) ≤ 0.

Proof. For any X ∈ X, we compare the payoff W (X) obtained under the

steady state policy C =M(X) with the payoff obtained from a small feasible

variation of this policy. If the variation policy yields a payoff that exceeds

W (X), then the steady-state policy is not optimal at X and this state does not

qualify as an optimal steady state. For small ε > 0 and ∆ = (δ1, δ2, . . . , δn)
′,

2It is easy to see how the two forms of L(·) in (3.3) extend the single-state L(·), defined
in equations (2.7)-(2.8) of Tsur and Zemel (2014, p. 167), to multi-state models.

3If X̂ lies in the interior of X, then X̂ is unconstrained, but the converse is not always
true, as unconstrained X̂ can fall on a boundary (where X̂ ∈ ∂X). Constrained steady
states, on the other hand, must fall on a boundary.
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the variation policy is defined by

Cε∆(t) ≡
{

M(X) + [JG
C (X,M(X))]−1∆ if t < ε

M(X(ε)) if t ≥ ε
.

While t < ε, Cε∆(t) deviates slightly from the steady-state policy C =M(X),

then it enters a steady state at X(ε). During the first period t ∈ [0, ε),

Ẋ = G(X,M(X)) + JG
C (X,M(X))[JG

C (X,M(X))]−1∆ + o(δ) = ∆ + o(δ),

which brings the state at t = ε to X(ε) = X + ε∆+ o(εδ).4

The contribution to the objective under the variation policy Cε∆(t) during

t < ε is evaluated, up to o(εδ) terms, by

∫ ε

0

f
(

X(t),M(X) + [JG
C (X,M(X))]−1∆

)

e−ρtdt =

=

∫ ε

0

ρW (X)e−ρtdt+ [fC(X,M(X))]′[JG
C (X,M(X))]−1[ε∆],

and the contribution during t ≥ ε is evaluated, up to o(εδ) terms, by

∫ ∞

ε

f(X(ε),M(X(ε)))e−ρtdt =

∫ ∞

ε

ρW (X(ε))e−ρtdt =

=

∫ ∞

ε

ρW (X)e−ρtdt+ [WX(X)]′[ε∆].

Summing the contributions of the two periods gives the payoff V ε∆(X) ob-

tained under the variation policy:

V ε∆(X) = W (X)+
[

[JG
C (X,M(X))]′ −1fC(X,M(X)) +WX(X)

]′
[ε∆]+ o(εδ).

Thus, noting (3.3),

V ε∆(X)−W (X) = [L(X)]′[ε∆]/ρ+ o(εδ).

The sign of the elements of ∆ can be freely chosen, while ε > 0. Now,

if L(X) 6= 0 we can set ∆ = δL(X), where δ is a small positive constant,

4The notation o(δ) indicates terms satisfying o(δ)/δ → 0 as δ → 0; a vector is o(δ) when
all its elements are o(δ).
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hence [L(X)]′∆ > 0. This implies V ε∆(X) > W (X) and X is not an optimal

steady state. Thus, only the roots of L(·) qualify as legitimate candidates for

an optimal steady state. The only possible exceptions are the bounds of X.

Choosing δi > 0 is not feasible at x̄i because this policy would drive the xi(·)

process outside the feasible domain. It follows thatX = (x1, x2, . . . , x̄i, . . . xn)
′

cannot be excluded as an optimal steady state if li(X) > 0. A similar ar-

gument implies that X = (x1, x2, . . . , x i, . . . xn)
′ cannot be excluded as an

optimal steady state if li(X) < 0.

That L(·) must vanish at an unconstrained steady state can alternatively

be seen as follows. Let Λ = (λ1, λ2, . . . , λn)
′ denote the (current-value) costate

vector and write the current-value Hamiltonian corresponding to problem (2.1)

as

H(X,C,Λ) = f(X,C) + Λ′G(X,C). (3.4)

Necessary conditions for an interior optimum include

fC(X,C) + [JG
C (X,C)]

′Λ = 0 (3.5)

and

Λ̇− ρΛ = −fX(X,C)− [JG
X(X,C)]

′Λ. (3.6)

From (3.5)

Λ = −[JG
C (X,C)]

′ −1 fC(X,C) (3.7)

holds along the optimal process, which brings (3.6) to the form

Λ̇ = ψ(X,C) ≡ −
(

ρIn − [JG
X(X,C)]

′
)

[JG
C (X,C)]

′ −1fC(X,C)− fX(X,C).

(3.8)

7



Evaluating (3.8) at the steady state policy C = M(X) and comparing with

(3.3), we see that at an interior steady state Λ̇ = −L(X̂), and since Λ̇ vanishes

at a steady state, L(X̂) must vanish as well.

We turn now to derive a stability condition for the steady state candidates

identified by Proposition 1.

4 Stability

Tsur and Zemel (2014) have shown that in single-state models the condi-

tion dL(X)/dX < 0 is necessary for a root of L(·) to be locally stable. We

extend this result to multi-state models by deriving a necessary condition for

local stability in terms of the Jacobian of L(·). Our approach differs from the

standard stability analysis (see, e.g, Rockafellar 1976, Brock and Scheinkman

1976, Cass and Shell 1976) in two respects. First, it is based on the n × n

Jacobian matrix JL
X(X) of L(·) rather than on the 2n×2n Jacobian matrix of

the modified Hamiltonian system defined in the 2n−dimensional state-costate

space. This distinction greatly simplifies the characterization in actual prob-

lems, not only due to the smaller dimension of the Jacobian involved, but

also because L(·) and its derivatives are directly obtained from the model’s

functions without resorting to first order conditions on the optimal trajecto-

ries. Second, our approach uses properties of the ordinary Hamiltonian rather

than those of the maximized Hamiltonian. As a result, our stability condition

holds under weaker assumptions. In particular, concavity of the maximized

Hamiltonian with respect to the state (which in turn requires that the Hamil-

tonian is jointly concave in the state and the control) is replaced in the present

approach by concavity of the Hamiltonian with respect to the control only.
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Let us briefly review the standard approach for analyzing the stability

properties of steady states. The maximized Hamiltonian is defined as

H0(X,Λ) ≡ max
C∈C

H(X,C,Λ) = H(X,C0(X,Λ),Λ), (4.1)

where C0(X,Λ) is the optimal action satisfying (3.5). The optimal state and

costate processes satisfy the necessary conditions

Ẋ = H0
Λ(X,Λ), (4.2a)

Λ̇ = ρΛ−H0
X(X,Λ) (4.2b)

and the Jacobian corresponding to the modified Hamiltonian system (4.2) is

J0(X,Λ) =





H0
ΛX(X,Λ) H0

ΛΛ(X,Λ)

−H0
XX(X,Λ) ρIn −H0

XΛ(X,Λ)



 . (4.3)

Denote by (X̂, Λ̂) a stationary state of (4.2), where Ẋ = Λ̇ = 0. This

state bears the saddle-point property if H0(X, Λ̂) ≤ H0(X̂, Λ̂) ≤ H0(X̂,Λ)

for all (X,Λ) in a neighborhood of (X̂, Λ̂). This property requires some

curvature of the maximized Hamiltonian near (X̂, Λ̂), which can be detected

by examining the eigenvalues of J0(X̂, Λ̂) (see, e.g., Kurz 1968, Levhari and

Liviatan 1972). For example, Rockafellar (1976) used the condition ρ2 < 4αβ,

where ρ is the discount rate, α is the smallest eigenvalue of H0
ΛΛ and β is the

smallest eigenvalue of −H0
XX , while Brock and Scheinkman (1976) required

the “curvature matrix”

Q =





H0
ΛΛ Inρ/2

Inρ/2 −H0
XX





to be positive definite and showed (in Brock and Scheinkman 1977) that Rock-

efaller’s condition implies their condition.
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The saddle-point property (in the state-costate space) implies the local

stability of X̂ in the state space.5 Returning to the present approach, we relate

this property to the n× n Jacobian matrix of L(·) under curvature conditions

imposed on the (ordinary) Hamiltonian H(X,C,Λ). In particular, let HCC

denote the n× n Hessian matrix of H with respect to C (with ∂2H/∂ci∂cj as

its ij element). Noting (3.7), define Λ̂ : X 7→ IRn by6

Λ̂(X) = −JG
C (X,M(X)) ′ −1fC(X,M(X)). (4.4)

Assumption 2. HCC(X,C,Λ) is negative definite in some neighborhood of

(X̂,M(X̂), Λ̂(X̂)) at all states satisfying L(X̂) = 0.

This assumption ensures that, near a steady state X̂, the action C0(X, Λ̂(X)),

defined by (3.5), is the unique (local) maximizer of H and excludes anomalies

such as Skiba points.

We now state a property that allows to narrow the list of optimal steady

state candidates (identified by Proposition 1) by ruling out some states that

are not locally stable:

Proposition 2. Suppose that assumptions 1-2 hold. If an unconstrained

steady state X̂ (where L(X̂) = 0) is locally stable then

(−1)n det(JL
X(X̂)) > 0.

Proof. The saddle-point property requires that (−1)n det
(

J0(X̂, Λ̂)
)

> 0

holds at (X̂, Λ̂). We show that the determinants of J0(X̂, Λ̂) and JL
X(X̂)

have the same sign. The 2n × 2n Jacobian matrix J0 can be expressed in

5X̂ is locally stable if there exists some ǫ > 0 such that (along the optimal trajectory)
‖X(t0)− X̂‖ < ǫ at some t0 implies X(t) → X̂.

6It is clear, noting (3.7) and (4.4), that if (X̂, Λ̂) is a steady state, then Λ̂ = Λ̂(X̂).
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terms of H as (see Wirl 1992, Eq. (21))

J0 =





JG
X + JG

C J
C0

X JG
C J

C0

Λ

−HXX −HXC J
C0

X ρIn − [JG
X ]

′ −HXC J
C0

Λ



 (4.5)

where JC0

X and JC0

Λ are the n× n Jacobian matrices of C0(X,Λ) with respect

to X and Λ, respectively and all functions are evaluated at (X,C0(X,Λ),Λ).

Differentiating (3.5) with respect to X and Λ gives

JC0

X = −[HCC ]
−1HCX (4.6)

and

JC0

Λ = −[HCC ]
−1HCΛ = −[HCC ]

−1[JG
C ]

′. (4.7)

(Assumption 2 ensures that JC0

X and JC0

Λ are well defined.) Substituting in

(4.5) yields

J0 =





JG
X − JG

C [HCC ]
−1HCX −JG

C [HCC ]
−1[JG

C ]
′

−HXX +HXC [HCC ]
−1HCX ρIn − [JG

X ]
′ +HXC [HCC ]

−1[JG
C ]

′





(4.8)

To obtain the Jacobian of L, differentiate (3.3), evaluate all functions at

X, C = M(X) and Λ = Λ̂(X) and use (3.1) to find (after some algebraic

manipulations)

JL
X = HXX −HXC [J

G
C ]

−1JG
X +

(

ρIn − [JG
X ]

′
)

[JG
C ]

′ −1
(

HCX −HCC [J
G
C ]

−1JG
X

)

.

(4.9)

To compare det(J0) and det(JL
X) we use a method to compute the deter-

minant of a 2n×2n matrix in terms of its four n×n sub-matrices.7 Let p, q, r

and s be the n×n matrices in J0 =

(

p q
r s

)

of (4.8). Let χ be an arbitrary

7We are grateful to Shaul Zemel for suggesting this reduction method to us.
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n × n matrix, 0 the n × n matrix of zeros and X ≡
(

In 0

χ In

)

. Obviously,

det(X ) = 1 hence

det(J0) = det(J0X ) = det

(

p+ qχ q
r + sχ s

)

.

Since q = −JG
C [HCC ]

−1[JG
C ]

′ is nonsingular (Assumptions 1-2), we can choose

χ = −q−1p, hence p+ qχ = 0 and

det(J0) = det(J0X ) = det

(

0 q
r − sq−1p s

)

= det(q) det
(

−[r − sq−1p]
)

.

(4.10)

Now,

r − sq−1p = −HXX +HXC [HCC ]
−1HCX+

(

ρIn − [JG
X ]

′ +HXC [HCC ]
−1[JG

C ]
′
)

[JG
C ]

′−1HCC [J
G
C ]

−1
(

JG
X − JG

C [HCC ]
−1HCX

)

= −JL
X ,

where the last equality follows (again, after some algebraic manipulations) by

setting C = M(X) in the arguments of the various functions and comparing

with (4.9). It follows that

det(J0) = det(JG
C ) det(−[HCC ]

−1) det([JG
C ]

′) det(JL
X)

=
(

det(JG
C )
)2

det(−[HCC ]
−1) det(JL

X). (4.11)

According to Assumption 2, the matrix −HCC is positive definite, hence (4.11)

implies that det(J0) and det(JL
X) have the same sign.8

Proposition 1 identifies candidates for an optimal steady state and Propo-

sition 2 provides useful information regarding the local stability of each candi-

date. Together, the two propositions often narrow the list of optimal steady

state candidates to a singleton. The next section demonstrates the application

of the Propositions in a number of two-state models.

8In single-state models (n = 1), equation (4.11) reduces to equation (C.10) of Tsur and
Zemel (2014).
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5 Two-state models

We apply the L-method to a number of two-state models. We begin with

three stylized examples that display a range of possible steady states: a unique

and stable root; a continuum of unstable roots; and multiple roots of which

only one is stable. We then consider the problem of managing hydrologically

coupled aquifers.

5.1 Three stylized examples

The three examples below illustrate how the application of the method

gives rise to a range of possible steady states.

5.1.1 Example 1: A unique root

Consider the problem

v1(x1(0), x2(0)) = max
{c1,c2}

∫ ∞

0

[(c1c2)
α − x1 − x2] exp(−ρt)dt, (5.1a)

subject to

ẋ1 = γc1 − δx1, (5.1b)

ẋ2 = γc2 − δx2 (5.1c)

given x1(0), x2(0), where α < 1/2 is imposed in order to satisfy Assumption 2.

The interaction between the states enters via the (c1c2)
α term in the objective.

Here, f(X,C) = (c1c2)
α − x1 − x2 and G(X,C) = γC − δX hence the steady

state policy is M(X) = δ
γ
X , from which we find JG

C = γI, JG
X = −δI,

fX =

(

−1
−1

)

and fC = α(δ/γ)2α−1(x1x2)
α−1

(

x2
x1

)

.

Using these expressions, (3.3) reduces to

L(X) =
α(ρ+ δ)

γ
(δ/γ)2α−1(x1x2)

α−1

(

x2
x1

)

−
(

1
1

)

. (5.2)
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Equation (5.2) admits a unique root

X̂ ≡
(

x̂1
x̂2

)

=
γ

δ

[

α(ρ+ δ)

γ

]1/(1−2α) (
1
1

)

. (5.3)

Since no bounds are imposed on X , X̂ is the unique candidate for a steady

state.

Next we evaluate the Jacobian matrix of L, using (5.2),

JL
X(X̂) =

1

x̂

(

α− 1 α
α α− 1

)

,

where x̂ = x̂1 = x̂2 = γ
δ

[

α(ρ+δ)
γ

]1/(1−2α)

. Thus, det(JL
X) = (1 − 2α)/x̂2 > 0

(since α < 1/2) and the stability condition of Proposition 2 is met.

By way of comparison, the 4 × 4 Jacobian matrix of the modified Hamil-

tonian system in this example is, using (4.8),

J0 =

(

−δI −γ2[HCC ]
−1

0 (ρ+ δ)I

)

.

Thus, det(J0) = [δ(ρ+ δ)]2 > 0, which agrees with the sign of det(JL
X). Note

that the result regarding the sign of det(J0) is independent of the condition

that α < 1/2. This is a reminder that det(J0) > 0 is merely a necessary

condition for saddle-point stability. Indeed, when α > 1/2 the matrix HCC is

indefinite (violating Assumption 2) and Ĉ = δ
γ
X̂ does not necessarily represent

a maximum for the Hamiltonian.

5.1.2 Example 2: A continuum of roots

Consider the problem

v2(x1(0), x2(0)) = max
{c1,c2}

∫ ∞

0

[cα1 + cα2 − x1 − x2] exp(−ρt)dt, (5.4)

subject to

ẋ1 = γc1 − δ(x1 + x2)

ẋ2 = γc2 − δ(x1 + x2).
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given x1(0), x2(0), where α < 1. The presence of each stock increases the

decay rate of the other.

In this example, M(X) = δ
γ

(

1 1
1 1

)

X , JG
C = γI, JG

X = −δ
(

1 1
1 1

)

,

fX =

(

−1
−1

)

, fC = α[ δ
γ
(x1 + x2)]

α−1

(

1
1

)

, fXX = 0, fCX = 0 and

fCC = α(α − 1)
[

δ
γ
(x1 + x2)

]α−2

I. Substituting these expressions in (3.3)

gives

L(X) =
α(ρ+ 2δ)

γ

[

δ

γ
(x1 + x2)

]α−1(
1
1

)

−
(

1
1

)

. (5.5)

We see that any state vector X̂ =

(

x̂1
x̂2

)

satisfying

x̂1 + x̂2 = R ≡ γ

δ

[

α(ρ+ 2δ)

γ

]1/(1−α)

is a root of L, thus qualifies as a candidate for an optimal steady state.

Differentiating (5.5) with respect to X at X = X̂ gives

JL
X(X̂) =

α− 1

R

(

1 1
1 1

)

.

Since det(JL
X) = 0, none of the steady state candidates (the continuum of the

roots of L) meets the conditions of Proposition 2 for saddle-point stability.

Indeed, solving for the optimal state process X∗(t), it is found that

X∗(t) =

1

2

{

R

(

1
1

)

+

(

1 −1
−1 1

)

X(0)−
[

R

(

1
1

)

−
(

1 1
1 1

)

X(0)

]

e−2δt

}

hence the steady state

X̂ =
1

2

{

R

(

1
1

)

+

(

1 −1
−1 1

)

X(0)

}

varies continuously with the initial state X(0), or more precisely, with the

initial state difference x1(0)− x2(0).
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Comparing with the standard approach, the 4×4 Jacobian of the modified

Hamiltonian system in this example is, using (4.8),

J0 =

(

JG
X −γ2[fCC ]

−1

0 ρI2 − [JG
X ]

′

)

.

Thus, det(JG
X) = 0 implies det(J0) = 0, in agreement with det(JL

X) = 0.

5.1.3 Example 3: Unstable roots

Consider the problem

v3(x1(0), x2(0)) = max
{c1,c2}

∫ ∞

0

[2(x1c1)
1/2+2c

1/2
2 −w(c1+ c2)] exp(−ρt)dt, (5.6)

subject to

ẋ1 = x1(1− x1)− 2(x1c1)
1/2

ẋ2 = c2 − δx2.

given X(0) = (x1(0), x2(0))
′. For example, x1 can represent a fish population

with a logistic growth, harvested at the rate 2(x1c1)
1/2 (where c1 is the fishing

effort) and the harvest is sold at a fixed unit price. The unit cost of fishing

effort is w > 0 and 1 > ρ > 0.9 The dynamics of x2 is trivial and is

independent of x1.

In this example,

M(X) =

(

x1(1− x1)
2/4

δx2

)

, JG
C =

(

−2/(1− x1) 0
0 1

)

,

JG
X =

(

(1− 3x1)/2 0
0 −δ

)

, fX =

(

(1− x1)/2
0

)

and

fC =

(

2/(1− x1)− w
(δx2)

−1/2 − w

)

.

9See Example 9.5.1 in Leonard and Long (1992).
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Substituting these expressions in (3.3) gives

L(X) =

(

p(x1)
(ρ+ δ)[(δx2)

−1/2 − w]

)

, (5.7)

where p(x) is the quadratic polynomial

p(x) =
1

4

[

−3wx2 + (4w − 8− 2wρ)x+ 4(1− ρ)− w(1− 2ρ)
]

,

which has two real roots, denoted x̂±1 , where x̂
+
1 > x̂−1 and 1 > x̂+1 > 0.10 The

function L, then, admits two roots: X̂± =

(

x̂±1
x̂2

)

, where x̂2 = 1/(δw2).

To study the stability of each root, we consider the Jacobian matrix

JL
X(X̂

±) =

(

dp(x̂±

1
)

dx
0

0 −δ(ρ+ δ)w3/2

)

.

The coefficient −3w/4 of the quadratic term of p(x) is negative hence dp/dx

is positive at the smaller root x̂−1 and det[JL
X(X̂

−)] < 0, violating the stability

condition. In contrast, the curve of p decreases at x̂+1 hence det[JL
X(X̂

+)] > 0

since both eigenvalues are negative, hence this feasible root qualifies as a stable

steady state.

5.2 The management of coupled aquifers

The recharge of many groundwater sources is derived, in addition to pre-

cipitation, also from lateral flows between adjacent aquifers or between cells

within an aquifer. As a result, groundwater management often requires the

consideration of multiple aquifers or multiple cells within an aquifer (see ex-

amples in Zeitouni and Dinar 1997, Athanassoglou et al. 2012). We apply

the L-method to the case of two adjacent aquifers. The extension to n > 2 is

straightforward.

10Write the discriminant of p(x) as ∆2 = [w(ρ + 1)− 4]2/4 + w(ρ+ 1) > 0 to verify that
the roots are real. Moreover, p(1) = −(ρ + 1) < 0 while dp

dx
(1) = −[w(ρ + 1) + 4]/2 < 0

hence both roots fall short of unity. On the other hand, p((1 − ρ)/2) = w(1 + ρ)2/16 > 0
hence x̂+

1 > (1− ρ)/2 > 0 as required for a feasible state.
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Water is extracted from two adjacent aquifers, whose stocks X = (x1, x2)
′

evolve in time according to

Ẋ = G(X,C) =

(

r1 − c1 − δ(x1 − x2)
r2 − c2 − δ(x2 − x1)

)

, (5.8)

where the vector C = (c1, c2)
′ represents the extraction rates, r1 and r2 are

the (constant) exogenous recharge rates, and δ is a flow rate describing the

lateral flow between the two aquifers when their stocks differ. Extraction at

the rates C = (c1, c2)
′ generates the instantaneous benefit

f(X,C) = α(c1 + c2)− (c21 + c22)/2− (z0 − z1x1)c1 − (z0 − z2x2)c2 (5.9)

where α > 0 is the maximal marginal benefit from the extraction of ei-

ther stock, and z0, z1, z2 are extraction costs parameters. A water policy

{C(t), t ≥ 0} is feasible if the ensuing stocks X(t) ∈ X ≡ [0, x̄1] × [0, x̄2],

where x̄1 ≤ z0/z1 and x̄2 ≤ z0/z2 are the aquifers capacity bounds. These

bounds ensure that the unit extraction costs (which decrease when the stocks

are larger) never turn negative. The optimal policy is the feasible policy that

maximizes
∫ ∞

0

f(X(t), C(t))e−ρtdt

subject to (5.8) given X(0), where ρ is the time rate of discount.

In this example,

M(X) =

(

r1
r2

)

− δ

(

1 −1
−1 1

)

X, JG
C = −I,

fX =

(

z1r1
z2r2

)

− δ

(

z1 −z1
−z2 z2

)

X, JG
X = −δ

(

1 −1
−1 1

)

,

and

fC =

(

α− z0 − r1
α− z0 − r2

)

+

(

z1 + δ −δ
−δ z2 + δ

)

X.
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Substituting these expressions in (3.3) gives

L(X) = JL
XX + L0 (5.10)

where

JL
X =

(

−(2δ + ρ)(z1 + δ) δ(z1 + z2 + 2δ + ρ)
δ(z1 + z2 + 2δ + ρ) −(2δ + ρ)(z2 + δ)

)

(5.11)

is the Jacobian of L(X) and

L0 =

(

δ(r1 − r2) + r1z1 + ρ(z0 − α+ r1)
δ(r2 − r1) + r2z2 + ρ(z0 − α+ r2)

)

.

When JL
X is nonsingular, L(X) admits a unique root

X̂ = −[JL
X ]

−1L0. (5.12)

Figure 1: Contours of 100×det(JL
X) plotted in the z1 (horizontal) - z2 (vertical)

plane. The det(JL
X) = 0 contours consist of two curves arranged symmetrically

on both sides of the z2 = z1 diagonal. The determinant is positive inside the
region confined between the det(JL

X) = 0 contours and is negative outside it.
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Notice that JL
X depends on ρ (the discount rate), δ (the lateral flow pa-

rameter), and z1 and z2 (the marginal extraction costs). Given values of ρ

and δ (e.g., the values listed in Table 1), we consider det(JL
X) as a function

of the marginal extraction costs (z1, z2). Figure 1 depicts the contours of

constant values of det(JL
X), which indicate the regions in the (z1, z2) plane at

which det(JL
X) is positive or negative. These regions are separated by the two

curves along which det(JL
X) = 0, denoted z±2 (·) and determined from (5.11) as

z±2 (z1) =
1

2δ2
[

2δ2ρ+ δρ2 + z1(2δ
2 + 4δρ+ ρ2)

]

±
√
ρ(2δ + ρ)

2δ2

√

δ2ρ+ z21(4δ + ρ) + δz1(4δ + 2ρ)

which implies z−2 (z1) < z1 < z+2 (z1). Along these curves, the solution (5.12)

is not well-defined and no internal steady state exists (except for the special

case in which the vector L0 is parallel to both columns of JL
X and L(·) yields

a continuum of unstable roots, a situation akin to that obtained in Example

5.1.2). Setting z1 = z2 in (5.11), we find that det(JL
X) > 0 along the diagonal

of Figure 1, hence the determinant is positive in the region confined between

the z±2 (·) curves. It follows that the vector X̂ of (5.12) obtained with a (z1, z2)

pair in this positive region meets the stability condition of Proposition 2.

Table 1: Parameter values.

Parameter Value Description

ρ 0.03 discount rate
δ 0.1 lateral flow rate
z0 10 maximal unit extraction cost
α 10 maximal marginal benefit
r1 1 recharge rate of aquifer 1
r2 1 recharge rate of aquifer 2
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Figure 2: L-function components in the case z1 = z2 = 0.2 and x̄1 = x̄2 = 50.
Upper panel: l1(50, x2) and l1(0, x2) for x2 ∈ [0, 50]. Lower panel: l2(x1, 50)
and l2(x1, 0) for x1 ∈ [0, 50]. In all cases, the signs of li(·, ·) violate the
condition of Proposition 1 for a corner steady state.

As an example, we consider z1 = z2 = 0.2 and note, observing Figure 1,

that det(JL
X) > 0. Now, x̄i = z0/zi = 50, i = 1, 2, while equation (5.12) gives

X̂ = (38.33, 38.33)′ ∈ X = [0, 50]× [0, 50], hence the root is feasible. To check

if an optimal steady state can fall on a boundary (i.e., x̂i = 0 or 50, i = 1, 2)

we see in Figure 2 that l1(50, x2) < 0 and l1(0, x2) > 0 for all x2 ∈ [0, 50];

likewise, l2(x1, 50) < 0 and l2(x1, 0) > 0 for all x1 ∈ [0, 50]. It follows that any

corner state violates the conditions of Proposition 1, hence does not qualify

as an optimal steady state. We conclude that X̂ = (38.33, 38.33)′ is the only

candidate for a stable steady state.
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Figure 3: L-function components in the case z1 = 0.1 and z2 = 0.6, corre-
sponding to x̄1 = 100 and x̄2 = 16.67. Upper panel: l1(100, x2) and l1(0, x2)
for x2 ∈ [0, 16.67]. Lower panel: l2(x1, 16.67) and l2(x1, 0) for x1 ∈ [0, 100].
Only the l2(x1, 16.67) line can obtain the correct sign for a corner steady state.

Consider now the case z1 = 0.1 and z2 = 0.6, where the effect of the stock

on the extraction cost is considerably larger in the second aquifer. Figure

1 reveals that det(JL
X) < 0 in this case, implying that there exists no uncon-

strained steady state that is locally stable. Thus, only constrained steady

states (that fall on the boundaries: x̂i = 0 or x̄i, i = 1, 2) may qualify. In this

case, the upper bounds are x̄1 = z0/z1 = 100 and x̄2 = z0/z2 = 16.67. Ob-

serving Figure 3, we see (upper panel) that l1(100, x2) < 0 and l1(0, x2) > 0

for all x2 ∈ [0, 16.67], ruling out (by virtue of Proposition 1) the possibility

of a constrained steady state with either x̂1 = 100 or x̂1 = 0. Likewise, the

lower panel of Figure 3 shows that l2(x1, 0) > 0 for all x1 ∈ [0, 100], ruling
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out the possibility of a constrained steady state with x̂2 = 0. In contrast, the

l2(x1, 16.67) line obtains the correct (positive) sign for an optimal corner state

at all x1 > 22. Since the constrained steady state must have x̂1 internal, the

choice of x̂1 must satisfy l1(x̂1, 16.67) = 0 (Proposition 1) giving x̂1 = 36.52.

Thus, the corner state X̂ = (36.52, 16.67)′ is the unique candidate for an opti-

mal steady state. We see that, in this example, Propositions 1 and 2 narrow

the list of optimal steady state candidates to a single state.

6 Concluding comments

The L-method has originally been proposed in Tsur and Zemel (2001, 2014)

to study long-run behavior of single-state models. The present work extends

the method to multi states models. In particular, unconstrained steady states

must be roots of L(·) while at corner steady states the relevant component of

L must obtain the correct sign. Similarly, the result that the one-dimensional

L must decrease at a locally stable steady state translates to a corresponding

condition on the sign of the determinant of the Jacobian matrix of the n-

dimensional L-function, because this matrix is closely related to the Jacobian

matrix of the 2n-dimensional dynamical system that governs the evolution in

time of the optimal state-costate processes.

The L-function is readily obtained from the model’s primitives, and its

application depends on minimal conditions – essentially the conditions needed

for the existence of an optimal policy. These properties open the way to study

long-run behavior in a large class of multi-state dynamic systems.
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